Identification of differentially expressed non-peptide molecules with metabolomics approach in pregnancy-induced hypertension


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective. Pregnancy-induced hypertension (PIH) is a pregnancy syndrome characterized by hypertension and proteinuria after 20 weeks of gestation. The pathophysiology of the PIH is not clear yet. The specif ic objective of this study is to investigate the differential metabolomic molecules presented in PIH. Materials and methods. A total number of 29 placentas, including 14 from PIH and 15 from normal pregnancies were subjected to metabolomic assessment. Results. A total number of 537 peaks (fractions) of non-peptide small molecules have been detected and computerized at thep<0.01 value. Among which, 84peaks were identified to be shared by all PIH types, including PIH1 that was defined as having blood pressure (BP) ranged 140-159/95-100 mmHg, PIH2 group with BP 160-179/105-125 mmHg, and PIH3 group with BP >180/100 mmHg. The level of 113 peaks decreased and 37 peaks increased when the control group was compared with that of PIH1, the level of 259 peaks was lower and that of 8 peaks was higher in PIH2 group, and the level of 311 peaks decreased and 16 peaks increased in PIH3 group. Two molecules, one (Feature 897.2/466) with increased expression from PIH1 group and another (Feature 736.1/1870) with decreased expression from PIH3 group showed excellent separation in PIH groups and control group. These two molecules could be potentially considered as bio-signature candidates for further investigations. Two molecules, Feature 894.2/467 and Feature 418.2/1345, showed a good separation in both intergroup and intragroup. Conclusion. Our findings justified a further investigation to characterize the molecules of the featured peaks and to perform prospective assessment of metabolomic technology as a screening tool for PIH. It may improve the diagnosis of PIH and preeclampsia using non-peptide biochemical markers.

Full Text

Restricted Access

About the authors

Tao Xuguang

Center of Translational Medicine for Maternal and Children's Health, Lianyungang Maternal and Children Hospital

Email: xgtltw2005@163.com

Luo Xiucui

Center of Translational Medicine for Maternal and Children's Health, Lianyungang Maternal and Children Hospital

Email: 1421033252@qq.com

Pan Jing

Center of Translational Medicine for Maternal and Children's Health, Lianyungang Maternal and Children Hospital

Email: lygkjk@126.com

Zhang Meijiao

Center of Translational Medicine for Maternal and Children's Health, Lianyungang Maternal and Children Hospital

Email: lygj@126.com

Zhao Xinlinag

Center of Translational Medicine for Maternal and Children's Health, Lianyungang Maternal and Children Hospital

Email: zxlf00@163.com

Wang Peirong

Center of Translational Medicine for Maternal and Children's Health, Lianyungang Maternal and Children Hospital

Email: prwang@foxmail.com

Zhong Nanbert

Center of Translational Medicine for Maternal and Children's Health, Lianyungang Maternal and Children Hospital; The Third Affiliated Hospital, Guangzhou Medical University; Nanfang Hospital, Southern Medical University; New York State Institute for Basic Research in Developmental Disabilities

Email: nanbert.zhong@opwdd.ny.gov

References

  1. Sibai B., Dekker G., Kupferminc M. Pre-eclampsia. Lancet. 2005; 365(9461): 785-99
  2. National High Blood Pressure Education Program Working Group on High Blood Pressure in Pregnancy. Report of the national high blood pressure education program working group on high blood pressure in pregnancy. Am. J. Obstet. Gynecol 2000; 183(1): S1-S22.
  3. Dekker G, Sibai B. Primary, secondary, and tertiary prevention of preeclampsia. Lancet. 2001; 357(9251): 209-15.
  4. Huang L.Y., Lu W.L., Sun Z. Risk factors of pregnancy-induced hypertention syndrome: A meta-analysis. Chin. Prev. Med. 2012; 13(3): 225-7.
  5. Maxiang L, Xiaoxian L. A case-control study on risk factors of pregnancy-induced hypertension syndrome. Chin. J. Soc. Med. 2009; 26: 177-9.
  6. Junxia X, Jinghui R, Xiaoxian L. Stepwise logistic regression analysis on high risk factors about pregnancy-induced hypertension (PIH) syndrome. Chin. Matern. Child Health Care. 2006; 16: 2209-10.
  7. Mustafa R., Ahmed S., Gupta A., Venuto R.C. A comprehensive review of hypertension in pregnancy. J Pregnancy. 2012; 2012: 105918.
  8. Charnock-Jones D.S., Kaufmann P., Mayhew T.M. Aspects of human fetoplacental vasculogenesis and angiogenesis. I. Molecular regulation. Placenta. 2004; 25(2-3): 103-13.
  9. Levine R.J., Maynard S.E., Qian C., Lim K.H., England L.J., Yu K.F. et al. Circulating angiogenic factors and the risk of pre-eclampsia. N. Engl. J. Med. 2004; 350(7): 672-83.
  10. Knudsen U.B., Kronborg C.S., von Dadelszen P., Kupfer K., Lee S.W., Vittinghus E. et al. A single rapid point of care placental growth factor determination as an aid in the diagnosis of preeclampsia. Pregnancy Hypertens. 2012; 2(1): 8-15.
  11. Ohkuchi A, Hirashima C., Matsubara S., Takahashi K., Matsuda Y., Suzuki M. Threshold of soluble fms-like tyrosine kinase 1/placental growth factor ratio for the imminent onset of preeclampsia. Hypertension. 2011; 58(5): 859-66.
  12. Kim S.Y., Ryu H.M., Yang J.H., Kim M.Y., Han J.Y., Kim J.O. et al. Increased sFlt-1 to PlGF ratio in women who subsequently develop preeclampsia. J. Korean Med. Sci. 2007; 22(5): 873-7.
  13. Molvarec A., Szarka A, Walentin S., Szucs E., Nagy B., Rigo J. Jr. Circulating angiogenic factors determined by electrochemiluminescence immunoassay in relation to the clinical features and laboratory parameters n women with preeclampsia. Hypertens. Res. 2010; 33(9): 892-8.
  14. Powers R.W., Jeyabalan A., Clifton R.G., Van Dorsten P., Hauth J.C., Klebanoff M.A. et al. Soluble fms-like tyrosine kinase 1 (sFlt1), endoglin and lacental growth factor (PlGF) in preeclampsia among high risk pregnancies. PLoS One. 2010; 5(10): e13263.
  15. Nadarajah V.D., Min R.G., Judson J.P., Jegasothy R., Ling E.H. Maternal plasma soluble fms-like tyrosine kinase-1 and placental growth factor levels as biochemical markers of gestational hypertension for Malaysian mothers. J. Obstet. Gynaecol. Res. 2009; 35(5): 855-63.
  16. Khalil A., Muttukrishna S., Harrington K., Jauniaux E. Effect of antihypertensive therapy with alpha methyldopa on levels of angiogenic factors in pregnancies with hypertensive disorders. PLoS One. 2008; 3(7): e2766.
  17. Chaiworapongsa T., Romero R., Korzeniewski S.J., Kusanovic J.P., Soto E., Lam J. et al. Maternal plasma concentrations of angiogenic/antiangiogenic factors in the third trimester of pregnancy to identify the patient at risk for stillbirth at or near term and severe late preeclampsia. Am. J. Obstet. Gynecol. 2013; 208(4): 287.e1-287. e15.
  18. Kalkunte S., Nevers T., Norris W.E., Sharma S. Vascular IL-10: a protective role in preeclampsia. J. Reprod. Immunol. 2011; 88(2): 165-9.
  19. Lai Z, Kalkunte S., Sharma S. A critical role of interleukin-10 in modulating hypoxia-induced preeclampsia-like disease in mice. Hypertension. 2011; 57(3): 505-14.
  20. Zhou P., Luo X., Qi H.B., Zong W.J., Zhang H., Liu D.D., Li Q.S. The expression of pentraxin 3 and tumor necrosis factor-alpha is increased in preeclamptic placental tissue and maternal serum. Inflamm. Res. 2012; 61(9): 1005-12.
  21. Saito S., Umekage H., Sakamoto Y., Sakai M., Tanebe K., Sasaki Y., Morikawa H. Increased T-helper-1-type immunity and decreased T-helper-2-type immunity in patients with preeclampsia. Am. J. Reprod. Immunol. 1999; 41(5): 297-306.
  22. Gupta S., Agarwal A., Sharma R.K. The role of placental oxidative stress and lipid peroxidation in preeclampsia. Obstet. Gynecol. Surv. 2005; 60(12): 807-16.
  23. Powe C.E., Levine R.J., Karumanchi S.A. Preeclampsia, a disease of the maternal endothelium: the role of anti-angiogenic factors and implications for later cardiovascular disease. Circulation. 2011; 123(24): 2856-69.
  24. de Jager C.A., Shephard E.G., Robson S.C., Jaskiewicz K., Froese S., Anthony J., Kirsch R.E. Degradation of fibronectin in association with vascular endothelial disruption in preeclampsia. J. Lab. Clin. Med. 1995; 125(4): 522-30.
  25. Struck J., Morgenthaler N.G., Bergmann A. Proteolytic processing pattern of the endothelin-1 precursor in vivo. Peptides. 2005; 26(12): 2482-6.
  26. Fiore G., Florio P., Micheli L., Nencini C., Rossi M., Cerretani D. et al. Endothelin-1 triggers placental oxidative stress pathways: putative role in preeclampsia. J. Clin. Endocrinol. Metab. 2005; 90(7): 4205-10.
  27. Huang P.L., Huang Z., Mashimo H., Bloch K.D., Moskowitz M.A., Bevan J.A., Fishman M.C. Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature. 1995; 377(6546): 239-42.
  28. Zhou R., Li W., Cao Z. The changes and significance of the intensity of transcription of endothelial nitric oxide synthase-mRNA in placental tissue from cases of pregnancy induced hypertension. Zhonghua Fu Chan Ke Za Zhi. 1998; 33(12): 709-10.
  29. Gu Y., Lewis D.F., Zhang Y., Groome L.J., Wang Y. Increased superoxide generation and decreased stress protein Hsp90 expression in human umbilical cord vein endothelial cells (HUVECs) from pregnancies complicated by preeclampsia. Hypertens. Pregnancy. 2006; 25(3): 169-82.
  30. Steinert J.R., Wyatt A.W., Poston L., Jacob R., Mann G.E. Preeclampsia is associated with altered Ca2+ regulation and NO production in human fetal venous endothelial cells. FASEB J. 2002; 16(7): 721-3.
  31. Orange S.J., Painter D., Horvath J., Yu B., Trent R., Hennessy A. Placental endothelial nitric oxide synthase localization and expression in normal human pregnancy and pre-eclampsia. Clin. Exp. Pharmacol. Physiol. 2003; 30(5-6): 376-81.
  32. Schiessl B., Mylonas I., Hantschmann P., Kuhn C., Schulze S., Kunze S. et al. Expression of endothelial NO synthase, nducible NO synthase, and estrogen receptors alpha and beta in placental tissue of normal, preeclamptic, and intrauterine growth-restricted pregnancies. J. Histochem. Cytochem. 2005; 53(12): 1441-9.
  33. Rytlewski K., Olszanecki R., Lauterbach R., Grzyb A., Basta A. Effects of oral L-arginine on the foetal condition and neonatal outcome in preeclampsia: a preliminary report. Basic Clin. Pharmacol. Toxicol. 2006; 99(2): 146-52.
  34. Smith C.A., O’Maille G., Want E.J., Qin C., Trauger S.A., Brandon T.R. et al. METLIN: a metabolite mass spectral database. Ther. Drug Monit. 2005; 27(6): 747-51.
  35. Dunn W., Ellis D. Metabolomics: current analytical platforms and methodologies. Trends Anal Chem. 2005; 24(4): 285-94.
  36. Tomita M., Nishioka T., eds. Metabolomics: the frontier of systems biology. Springer; 2005.
  37. Mamas M., Dunn W.B., Neyses L., Goodacre R. The role of metabolites and metabolomics in clinically applicable biomarkers of disease. Arch. Toxicol. 2011; 85(1): 5-17.
  38. Kenny L., Dunn W., Ellis D., Myers J., Baker P., Consortium G., Kell D. Novel biomarkers for pre-eclampsia detected using metabolomics and machine learning. Metabolomics. 2005; 1(3): 227-34.
  39. Xuemei Lou, Chenhong W., Dayan L. Plasma metabonomics in severe preeclampsia. J. Pract. Obstet. Gynecol. 2011; 27(12): 928-32.
  40. Fu M., Li Z., Tan T., Guo W., Xie N., Liu Q. et al. Akt/eNOS signaling pathway mediates inhibition of endothelial progenitor cells by palmitate-induced ceramide. Am. J. Physiol. Heart Circ. Physiol, 2015; 308(1): H11-7.
  41. Wang A., Li C., Liao J., Dong M., Xiao Z., Lei M. Ceramide mediates inhibition of the Akt/eNOS pathway by high levels of glucose in human vascular endothelial cells. J. Pediatr. Endocrinol. Metab. 2013; 26(1-2): 31-8.
  42. Ren H., Zhang C., Su L., Bi X., Wang C., Wang L., Wu B. Type II anti-CD20 mAb-induced lysosome mediated cell death is mediated through a ceramide-dependent pathway. Biochem. Biophys. Res. Commun, 2015; 457(4): 572-7.
  43. Wang M., Yu T., Zhu C., Sun H., Qiu Y., Zhu X., Li J. Resveratrol triggers protective autophagy through the ceramide/Akt/mTOR pathway in melanoma B16 cells. Nutr. Cancer, 2014; 66(3): 435-40.
  44. Srivastava A., Gupta P.K., Knock G.A., Aaronson P.I., Mishra S.K., Prakash V.R. Effect of ceramide on the contractility of pregnant rat uterus. Eur. J. Pharmacol. 2007; 567(1-2): 159-65.
  45. Parchim N.F., Wang W., Iriyama T., Ashimi O.A., Siddiqui A.H., Blackwell S. et al. Neurokinin 3 receptor and phosphocholine transferase: missing factors for pathogenesis of C-reactive protein in preeclampsia. Hypertension. 2015; 65(2): 430-9.
  46. Kitos T.E., Choi C.M., Cornell R.B. Angiotensin stimulates phosphatidylcholine synthesis via a pathway involving diacylglycerol, protein kinase C, ERK1/2, and CTP: phosphocholine cytidylyltransferase. Biochim. Biophys. Acta. 2006; 1761(2): 272-9

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies