An experimental model for correction of the vaginal microbiota during the inflammatory process


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Currently, the development of inflammatory processes in the female urogenital tract is already clearly associated with a decline in the number of lactobacilli that are dominant in the vaginal microbiota in health. Lactic acid (LA) is the main metabolite of lactobacilli, which regulates their anti-inflammatory functions. Objective. To determine the antimicrobial activity of LA in combination with glycogen against various test cultures of opportunistic pathogenic microorganisms. To investigate morphofunctional changes in the cells of the opportunistic pathogenic bacteria S. aureus and E. coli and the microscopic fungus C. albicans in the presence of LA with glycogen in vitro. To develop an experimental model to study the effect of various pH values that mimic the inflammatory process on the growth of test cultures of probiotic lactobacilli, the main representatives of the vaginal microbiota in the presence of LA with glycogen. Materials and methods. The investigation was concerned with the associations of lactobacilli, the main representatives of the vaginal microbiota, Complex No. 1 (L. crispatus, L. rhamnosus, L. gasseri, L. jensenii), Complex No. 2 (L. gasseri, L. fermentum, L. plantarum), Complex No. 3 (L. crispatus, L. brevis, and L. acidophilus), and L. casei. The museum strains of S. aureus 65 and E. coli M17, as well as the museum strain of microscopic C. albicans 8 fungi from the collection of the N.F. Gamaleya Research Institute of Epidemiology and Microbiology were selected as opportunistic pathogenic bacteria. Lactagel, a vaginal gel containing LA 225 mg and glycogen, was used as a source of LA. The growth of the cultures and the morphological properties of the cells when exposed to LA were analyzed by microbiological and electron microscopic assays using transmission electron microscopy. Results. A model for carrying out experiments was developed to determine the ability of LA in combination with glycogen to stimulate the growth and development of probiotic lactobacilli at high pH values characteristic of inflammation. The effect of LA with glycogen on opportunistic pathogenic bacteria and microscopic fungi was manifested by inhibition of the growth of these microorganisms. An electron microscopic study of ultrathin sections of opportunistic pathogenic bacteria and fungi made it possible to establish destructive changes in their morphofunctional properties when exposed to LA in combination with glycogen. At the same time, LA did not adversely affect the morphological properties of lactobacilli and stimulated their growth. LA in combination with glycogen showed an average of 1.5-3.5-fold greater antimicrobial activity than probiotic lactobacillus strains against opportunistic pathogenic bacteria and fungi. Conclusion. An experimental model for conducting a fundamental study of the effect of LA in combination with glycogen on the growth and development of probiotic lactobacilli in vitro, by taking into account the pH value of a medium, was first described. The investigation established that LA in combination with glycogen might be used as the main factor regulating the natural composition of the vaginal microbiota.

Full Text

Restricted Access

About the authors

Oksana V. Rybalchenko

Saint Petersburg State University

Email: OVR@inbox.ru
DSc., Professor of Medical Department

O. G Orlova

Saint Petersburg State University

Email: oorlova18@mail.ru
PhD, Associate Professor of Medical Department

V. V Kapustina

Saint Petersburg State University

Email: kapustina.valeriya@list.ru
Senior Laboratory Assistant of Medical Department

References

  1. Pavlova S.I., Kilic A.O., Kilic S.S., So J.S., Nader-Macias M.E., Simoes J.A., Tao L. Genetic diversity of vaginal lactobacilli from women in different countries based on 16S rRNA gene sequences. J. Appl. Microbiol. 2002; 92(3): 451-9.
  2. Antonio M.A.D., Hawes S.E., Hillier S.L. The identification of vaginal Lactobacillus species and the demographic and microbiologic characteristics of women colonized by these species. J. Infect. Dis. 1999; 180(6): 1950-6.
  3. Priestlley C.F.J., Jones B.M., Dhar J., Goodwin L. What is normal vaginal flora? Genitourin. Med. 1997; 73: 23-8.
  4. Рыбальченко О.В., Орлова О.Г., Бондаренко В.М. Антимикробные пептиды лактобацилл. Журнал микробиологии, эпидемиологии и иммунобиологии. 2013; 4: 89-100.
  5. Бондаренко В.М., Бондаренко К.Р., Рыбальченко О.В. и др. Микробиота матери в формировании микробиоценоза новорожденного. УМП. СПб: СпецЛит; 2018. 150 с.
  6. Charlier C., Cretenet M., Even S., Le Loir Y. Interactions between Staphylococcus aureus and lactic acid bacteria: an old story with new perspectives. Int. J. Food. Microbiol. 2009; 131: 30-9.
  7. Hickey R.J., Zhou X., Pierson J.D., Ravel J., Forney L.J. Understanding vaginal microbiome complexity from an ecological perspective. Transl. Res. 2012; 160(4): 267-82.
  8. Reid G., Kim S.O., Kohler G.A. Selecting, testing and understanding probiotic microorganisms. FEMS Immunol. Med. Microbiol. 2006; 46(2): 149-57.
  9. Hill D.R., Brunner M.E., Schmitz D.C., Davis C.C., Flood J.A. et al. In vivo assessment of human vaginal oxygen and carbon dioxide levels during and post menses. J. Appl. Physiol. 2005; 99(4): 1582-91.
  10. Wagner G., Bohr L., Wagner P., Petersen L.N. Tampon-induced changes in vaginal oxygen and carbon dioxide tensions. Am. J. Obstet. Gynecol. 1984; 148(2): 147-50. https://dx.doi.org/10.1016/S0002-9378(84)80165-9.
  11. Wagner G., Levin R. Oxygen tension of the vaginal surface during sexual stimulation in the human. Fertito Steril. 1978; 30: 50-3.
  12. Quatravaux S., Remize F., Bryckaert E., Colavizza D., Guzzo J. Examination of the Lactobacillus plantarum lactate metabolism side effects in relation to the modulation of aeration parameters. J. Appl. Microbiol. 2006; 101(4): 903-12. https://dx.doi.org/10.1111/j.1365-2672.2006.02955.x.
  13. Murphy M.G., O’Connor L., Walsh D., Condon S. Oxygendependent lactate utilization by Lactobacillus plantarum. Arch. Microbiol. 1985; 141: 75-9. https:// dx.doi.org/10.1007/BF00446743.
  14. Lardner A. The effects of extracellular pH on immune function. J. Leukoc. Biol. 2001; 69(4): 522-30. 10.1189/jlb.69.4.522.
  15. Yang E., Fan L., Yan J., Jiang Y., Doucette C., Fillmore Sh., Walker B. Influence of culture media, pH and temperature on growth and bacteriocin production of bacteriocinogenic lactic acid bacteria. AMB Express. 2018; 8(1): 10. https:// dx.doi.org/10.1186/s13568-018-0536-0.
  16. Olson E.R. Review Influence of pH on bacterial gene expression. Mol. Microbiol. 1993; 8(1): 5-14.
  17. Guerra N.P., Pastrana L. Influence of pH drop on both nisin and pediocin production by Lactococcuslactis and Pediococcus acidilactici. Lett. Appl. Microbiol. 2003; 37(1): 51-5.
  18. Brotman R.M., Bradford L.L., Conrad M., Gajer P., Ault K. et al. Association between Trichomonas vaginalis and vaginal bacterial community composition among reproductive-age women. Sex Transm. Dis. 2012; 39(10): 807-12.
  19. Wiesenfeld H.C., Hillier S.L., Krohn M.A., Landers D.V., Sweet R.L. Bacterial vaginosis is a strong predictor of Neisseria gonorrhoeae and Chlamydia trachomatis infection. Clin. Infect. Dis. 2003; 36(5): 663-8. https://dx.doi. org/10.1086/367658.
  20. Srinivasan S., Liu C., Mitchell C.M., Fiedler T.L., Thomas K.K. et al. Temporal variability of human vaginal bacteria and relationship with bacterial vaginosis. PLoS One. 2010; 5(4): e10197.
  21. Sewankambo N., Gray R.H., Wawer M.J., Paxton L., McNaim D. et al. HIV-1 infection associated with abnormal vaginal flora morphology and bacterial vaginosis. Lancet. 1997; 350(9077): 546-50. https://dx.doi.org/10.1016/S0140-6736(97)01063-5.
  22. Cherpes T.L., Meyn L.A., Krohn M.A., Lurie J.G., Hillier S.L. Association between acquisition of herpes simplex virus type 2 in women and bacterial vaginosis. Clin. Infect. Dis. 2003; 37(3): 319-25. https://dx.doi.org/10.1086/ 375819.
  23. Mane A., Kulkarni S., Ghate M., Risbud A., Thakar M. HIV-1 RNA shedding in the female genital tract is associated with reduced quantity of Lactobacilli in clinically asymptomatic HIV-positive women. Diagn. Microbiol. Infect. Dis. 2013; 75(1): 112-4. https://dx.doi.org/10.1016/ j.diagmicrobio. 2012.09.009.
  24. Shukair S.A., Allen S.A., Cianci G.C., Stieh D.J., Anderson M.R. et al. Human cervicovaginal mucus contains an activity that hinders HIV-1 movement. Mucosal Immunol. 2013; 6(2): 427-34. https://dx.doi.org/10.1038/ mi.2012.87.
  25. Aroutcheva A., Gariti D, Simon M., Shott S., Faro J., Simoes J.A., Gurguis A., Faro S. Defense factors of vaginal lactobacilli. Am. J. Obstet. Gynecol. 2001; 185(2): 375-9.
  26. Gillor O, Nigro L, Riley M. Genetically engineered bacteriocins and their potential as the next generation of antimicrobials. Curr. Pharm. Des. 2005; 11(8): 1067-75.
  27. Karaoglu S.A, Aydin F., Kilic S.S., Kilic A.O. Antimicrobial activity and characteristics of bacteriocins produced by vaginal lactobacilli. Turk. J. Med. Sci. 2002; 33: 7-13.
  28. Qualye A.J. The innate and early immune response to pathogen challenge in the female genital tract and the pivotal role of epithelial cells. J. Reprod. Immunol. 2002; 57: 61-79.
  29. Underhill D.M., Ozinsky A. Toll-like receptors: key mediators of microbe detection. Curr. Opin. Immunol. 2002; 14(1): 103-10.
  30. Hancock R.E.W. Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect. Dis. 2000; 1(3): 156-64.
  31. Pillay K., Coutsoudis A., Agadzi-Naqvi A.K., Kuhn L., Coovadia H.M., Janoff E.N. Secretory leukocyte protease inhibitor in vaginal fluids and perinatal human immunodeficiency virus type 1 transmission. J. Infect. Dis. 2001; 183(4): 653-6.
  32. Klein N.J. Mannose-binding lectin: do we need it? Mol. Immunol. 2005; 42(8): 919-24.
  33. Babula O., Lazdane G, Kroica J., Ledger W.J., Witkin S.S. Relation between recurrent vulvovaginal candidiasis, vaginal concentrations of mannose-binding lectin, and a mannose-binding lectin gene polymorphism in Latvian women. Clin. Infect. Dis. 2003; 37(5): 733-7.
  34. Bolton M., Van Der Straten A., Cohen C. Probiotics: potential to prevent HIV and sexually transmitted infections in women. Sex. Transm. Dis. 2008; 35(3): 214-25.
  35. Sherrard J., Wilson J., Donders G., Mendling W. 2018 European (IUSTI/WHO) Guideline on the Management of Vaginal Discharge. International Union against Sexually Transmitted Infections; 2018.
  36. Cribby S., Taylor M., Reid G. Vaginal microbiota and the use of probiotics. Interdiscip. Perspect. Infect. Dis. 2008; 2008: 256490.
  37. Sobel J.D. Bacterial vaginosis. Br. J. Clin. Pract. 1990; 71(Suppl.): 65-9.
  38. OHanlon D.E., Moench T.R., Cone R.A. Vaginal pH and microbicidal lactic acid when Lactobacilli dominate the microbiota. PLoS One. 2013; 8(11): e80074. https://dx.doi.org/10.1371/journal.pone.0080074.
  39. Graver M.A., Wade J.J. The role of acidification in the inhibition of Neisseria gonorrhoeae by vaginal lactobacilli during anaerobic growth. Ann. Clin. Microbiol. Antimicrob. 2011; 10: 8.
  40. Juarez Tomas M.S., Ocana V.S., Wiese B., Nader-Macias M.E. Growth and lactic acid production by vaginal Lactobacillus acidophilus CRL 1259, and inhibition of uropathogenic Escherichia coli. J. Med. Microbiol. 2003; 52(Pt 12): 1117-24. https://dx.doi.org/10.1099/jmm.0.05155-0.
  41. Кира Е.Ф., Рыбальченко О.В., Орлова О.Г., Коршакова Н.Ю. Изучение активности молочной кислоты in vitro и ее значение для клинической практики в лечении инфекций влагалища. Акушерство и гинекология. 2017; 11: 84-90.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies