Small non-coding RNAs and their potential role in assessing the fertility of a married couple in assisted reproductive technology programs


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The authors carried out a systematic analysis of scientific data on the impact of small non-coding RNAs on gametogenesis, embryogenesis, and outcomes of in vitro fertilization programs. Despite the fact that there is a rapid development of assisted reproductive technologies, the rate of successful embryo implantations in the uterine cavity is still at a fairly low level. Therefore, at the moment, scientists are actively searching for the ideal biomarker that determines the quality of gametes and their potential in the formation of a high-quality embryo with the further development of physiological pregnancy. An analysis of the data available in the literature has led to the conclusion that the investigation of small non-coding RNAs with the aim of assessing the fertility of a married couple is extremely promising, relevant, and in tune with the times and will be able to increase the effectiveness of in vitro fertilization programs.

Full Text

Restricted Access

About the authors

M. A Shamina

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: mariashamina@mail.ru

A. V Timofeeva

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: avtimofeeva28@gmail.com

E. A Kalinina

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: e_kalinina@oparina4.ru

References

  1. Mesen T.B., Young S.L. Progesterone and the luteal phase: a requisite to reproduction. Obstet Gynecol Clin North Am. 2015 Mar; 42(1): 135-51. doi: 10.1016/j.ogc.2014.10.003. Epub 2015 Jan 5.
  2. Rosenfield R.L., Ehrmann D.A. The Pathogenesis of Polycystic Ovary Syndrome (PCOS): The Hypothesis of PCOS as Functional Ovarian Hyperandrogenism Revisited. Endocr Rev. 2016 0ct;37(5):467-520. Epub 2016 Jul 26.
  3. Dun E.C., Nezhat C.H. Tubal factor infertility: diagnosis and management in the era of assisted reproductive technology. Obstet Gynecol Clin North Am. 2012 Dec;39(4):551-66. doi: 10.1016/j.ogc.2012.09.006.
  4. Pol at M., Yarali І., Boynukalin K., Yarali H. In vitro fertilization for endometriosis-associated infertility. Womens Health (Lond). 2015; 11(5): 633-41. doi: 10.2217/whe.15.50
  5. Abrao M.S., Muzii L., Marana R. Anatomical causes of female infertility and their management. Int J. Gynaecol Obstet. 2013 Dec; 123 Suppl 2: S18-24. doi: 10.1016/j.ijgo.2013.09.008. Epub 2013 Sep 11.
  6. Leaver R.B. Male infertility: an overview of causes and treatment options. Br J. Nurs. 2016 Oct 13; 25(18): S35-S40.
  7. Milewski R., Milewska A.J., Czerniecki J., Lesniewska M., Wolczynski S. Analysis of the demographic profile of patients treated for infertility using assisted reproductive techniques in 2005-2010. Ginekol Pol. 2013 Jul; 84(7): 609-14.
  8. Alrabeeah K., Yafi F., Flageole C., Phillips S., Wachter A., Bissonnette F., Kadoch I.J., Zini A. Testicular sperm aspiration for nonazoospermic men: sperm retrieval and intracytoplasmic sperm injection outcomes. Urology. 2014 Dec; 84(6): 1342-6. doi: 10.1016/j.urology.2014.08.032.
  9. Stuppia L., Franzago M., Ballerini P., Gatta V., Antonucci I. Epigenetics and male reproduction: the consequences of paternal lifestyle on fertility, embryo development, and children lifetime health. Clin Epigenetics. 2015 Nov 11;7:120. doi: 10.1186/s13148-015-0155-4. eCollection 2015.
  10. Liang J., Wang S., Wang Z. Role of microRNAs in embryo implantation. Reprod Biol Endocrinol. 2017;15:90. doi: 10.1186/s12958-017-0309-7.
  11. Teh W.T., McBain J., Rogers P. What is the contribution of embryo-endometrial asynchrony to implantation failure? J. Assist Reprod Genet. 2016 Nov;33(11):1419-1430. doi: 10.1007/s10815-016-0773-6.
  12. Кузьмичев Л.Н., Смольникова В.Ю., Калинина Е.А., Дюжева Е.В. Принципы комплексной оценки и подготовки эндометрия у пациенток программ вспомогательных репродуктивных технологий. Акушерство и гинекология. 2010; 5: 32-36.
  13. Смольникова В.Ю., Калинина Е.А., Краснощока О.Е., Донников А.Е., Бурменская О.В., Трофимов Д.Ю., Сухих Г.Т. Возможности неинвазивной оценки состояния ооцита и эмбриона при проведении программ ВРТ по профилю экспрессии мРНК факторов роста в фолликулярной жидкости. Акушерство и гинекология. 2014; 9: 36-43.
  14. Machtinger R., Rodosthenous R.S., Adir M., Mansour A., Racowsky C., Baccarelli A.A., Hauser R. Extracellular microRNAs in follicular fluid and their potential association with oocyte fertilization and embryo quality: an exploratory study. J. Assist Reprod Genet. 2017; 34(4): 525-533. doi: 10.1007/ s10815-017-0876-8.
  15. Hombach S., Kretz M. Non-coding RNAs: Classification, Biology and Functioning. Adv Exp Med Biol. 2016; 937: 3-17. doi: 10.1007/978-3-319-42059-2_1. Review
  16. Moraes F., Goes A. A decade of human genome project conclusion: Scientific diffusion about our genome knowledge. Biochem Mol Biol Educ. 2016; 44(3): 215-23. doi: 10.1002/bmb.20952. Epub 2016 Mar 7. Review
  17. Jia H., Osak M., Bogu G.K., Stanton L.W., Johnson R., Lipovich L. Genome-wide computational identification and manual annotation of human long noncoding RNA genes. RNA. 2010; 16(8): 1478-87. doi: 10.1261/ rna.1951310
  18. Siomi M.C., Sato K., Pezic D., Aravin A.A. PIWI interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol. 2011; 12: 246-58. doi: 10.1038/nrm3089
  19. Tam O.H., Aravin A.A., Stein P., Girard A., Murchison E.P., Cheloufi S., Hodges E., Anger M., Sachidanandam R., Schultz R.M., Hannon G.J. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature. 2008; 453: 534-8. doi: 10.1038/nature06904
  20. Dueck A., Meister G. Assembly and function of small RNA - Argonaute protein complexes. Biol Chem. 2014; 395: 611-29. doi: 10.1515/ hsz-2014-0116
  21. Krol J., Loedige I., Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010; 11: 597-610. doi:10.1038/ nrg2843
  22. Jonas S., Izaurralde E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet. 2015; 16: 421-33. doi: 10.1038/nrg3965
  23. Sayed D., Abdellatif M. MicroRNAs in development and disease. Physiol Rev. 2011; 91: 827-87. doi: 10.1152/physrev.00006.2010
  24. Friedman R.C., Farh K.K-H., Burge C.B., Bartel D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009; 19: 92-105. doi: 10.1101/gr.082701.108
  25. MacLennan M., Crichton J.H., Playfoot C.J., Adams I.R. Oocyte development, meiosis and aneuploidy. Semin Cell Dev Biol. 2015; 45: 68-76. doi: 10.1016/j. semcdb.2015.10.005. Epub 2015 Oct 8
  26. Battaglia R., Vento M.E., Ragusa M., Barbagallo D., La Ferlita A., Di Emidio G., Borzi P., Artini P.G., Scollo P., Tatone C., Purrello M., Di Pietro C. MicroRNAs Are Stored in Human MII Oocyte and Their Expression Profile Changes in Reproductive Aging. Biol Reprod. 2016; 95(6): 131. doi: 10.1095/ biolreprod.116.142711
  27. Sang Q., Yao Z., Wang H., Feng R., Wang H., Zhao X., Xing Q., Jin L., He L., Wu L., Wang L. Identification of microRNAs in human follicular fluid: characterization of microRNAs that govern steroidogenesis in vitro and are associated with polycystic ovary syndrome in vivo. J Clin Endocrinol Metab. 2013; 98(7): 3068-79. doi: 10.1210/jc.2013-1715
  28. Silveira da J.C., Winger Q.A., Bouma G.J., Carnevale E.M. Effects of age on follicular fluid exosomal microRNAs and granulosa cell transforming growth factor-в signalling during follicle development in the mare. Reprod Fertil Dev. 2015; 27(6): 897-905. doi: 10.1071/RD14452.
  29. Diez-Fraile A.,, Lammens T., Tilleman K., Witkowski W., Verhasselt B., De Sutter P., Benoit Y., Espeel M., D’Herde K. Age-associated differential microRNA levels in human follicular fluid reveal pathways potentially determining fertility and success of in vitro fertilization. Hum Fertil (Camb). 2014;17(2): 90-8. doi: 10.3109/14647273.2014.897006. Epub 2014 Mar 31.
  30. Krisher R.L. The effect of oocyte quality on development. J Anim Sci. 2004; 82 E-Suppl:E14-23. doi: 10.2527/2004.8213_supplE14x
  31. Alfaidy N., Hoffmann P., Gillois P., Gueniffey A., Lebayle C., Garqin H., Thomas-Cadi C., Bessonnat J., Coutton C., Villaret L., Quenard N., Bergues U., Feige J.J., Hennebicq S., Brouillet S. PROK1 Level in the Follicular Microenvironment: A New Noninvasive Predictive Biomarker of Embryo Implantation. J Clin Endocrinol Metab. 2016;101(2): 435-44. doi: 10.1210/jc.2015 -19 88. Epub 2015 Sep 24.
  32. Dumesic D.A., Meldrum D.R., Katz-Jaffe M.G., Krisher R.L., Schoolcraft W.B. Oocyte environment: follicular fluid and cumulus cells are critical for oocyte health. Fertil Steril. 2015; 103(2): 303-16. doi: 10.1016/j.fertnstert.2014.11.015. Epub 2014 Dec 10.
  33. Hammond S.M. An overview of microRNAs. Adv Drug Deliv Rev. 2015; 87: 3-14. doi: 10.1016/j.addr.2015.05.001. Epub 2015 May 12.
  34. Zamah A.M., Hassis M.E., Albertolle M.E., Williams K.E. Proteomic analysis of human follicular fluid from fertile women. Clin Proteomics. 2015; 12(1): 5. doi: 10.1186/s12014-015-9077-6. eCollection 2015.
  35. Fu J., Qu R.G., Zhang Y.J., Gu R.H., Li X., Sun Y.J., Wang L., Sang Q., Sun X.X. Screening of miRNAs in human follicular fluid reveals an inverse relationship between microRNA-663b expression and blastocyst formation. Reprod Biomed Online. 2018; 37(1): 25-32. doi: 10.1016/j.rbmo.2018.03.021. Epub 2018 Apr 13.
  36. Neto FT., Bach P.V., Najari B.B., Li P.S., Goldstein M. Spermatogenesis in humans and its affecting factors. Semin Cell Dev Biol. 2016; 59: 10-26. doi: 10.1016/j.semcdb.2016.04.009. Epub 2016 Apr 30.
  37. Kotaja N. MicroRNAs and spermatogenesis. Fertil Steril. 2014; 101(6): 1552-62. doi: 10.1016/j.fertnstert.2014.04.025
  38. Krawetz S.A., Kruger A., Lalancette C., Tagett R., Anton E., Draghici S., Diamond M.P. A survey of small RNAs in human sperm. Hum Reprod. 2011; 26(12): 3401-12. doi: 10.1093/humrep/der329. Epub 2011 Oct 11.
  39. Yang Q., Hua J., Wang L., Xu B., Zhang H., Ye N., Zhang Z., Yu D., Cooke H.J., Zhang Y., Shi Q. MicroRNA and piRNA profiles in normal human testis detected by next generation sequencing. PLoS One. 2013; 8(6): e66809. doi: 10.1371/journal.pone.0066809. Print 2013.
  40. Abu-Halima M., Backes C., Leidinger P., Keller A., Lubbad A.M., Hammadeh M., Meese E. MicroRNA expression profiles in human testicular tissues of infertile men with different histopathologic patterns. Fertil Steril. 2014; 101(1): 78-86.e2. doi: 10.1016/j.fertnstert.2013.09.009
  41. Salas-Huetos A., Blanco J., Vidal F., Mercader J.M., Garrido N., Anton E. New insights into the expression profile and function of micro-ribonucleic acid in human spermatozoa. Fertil Steril. 2014; 102(1): 213-222.e4. doi: 10.1016/j. fertnstert.2014.03.040
  42. Ge S.Q., Lin S.L., Zhao Z.H., Sun Q.Y. Epigenetic dynamics and interplay during spermatogenesis and embryogenesis: implications for male fertility and offspring health. Oncotarget. 2017; 8(32): 53804-18. doi: 10.18632/ oncotarget.17479
  43. Wang C., Yang C., Chen X., Yao B., Yang C., Zhu C., Li L., Wang J., Li X., Shao Y., Liu Y., Ji J., Zhang J., Zen K., Zhang C.Y., Zhang C. Altered profile of seminal plasma microRNAs in the molecular diagnosis of male infertility. Clin Chem. 2011; 57(12): 1722-31. doi: 10.1373/clinchem. 2011.169714
  44. Comazzetto S., Di Giacomo M., Rasmussen K.D., Much C., Azzi C., Perlas E., Morgan M., O’Carroll D. Oligoasthenoteratozoospermia and infertility in mice deficient for miR-34b/c and miR-449 loci. PLoS Genet. 2014; 10(10): e1004597. doi: 10.1371/journal.pgen.1004597.
  45. Abu-Halima M., Hammadeh M., Schmitt J., Leidinger P., Keller A., Meese E., Backes C. Altered microRNA expression profiles of human spermatozoa in patients with different spermatogenic impairments. Fertil Steril. 2013; 99 (5): 1249-55.e16. doi: 10.1016/j.fertnstert. 2012.11.054
  46. Wu W., Qin Y., Li Z., Dong J., Dai J., Lu C., Guo X., Zhao Y., Zhu Y., Zhang W., Hang B., Sha J., Shen H., Xia Y., Hu Z., Wang X. Genome-wide microRNA expression profiling in idiopathic non-obstructive azoospermia: significant up-regulation of miR-141, miR-429 and miR-7-1-3p. Hum Reprod. 2013; 28(7): 1827-36. doi: 10.1093/humrep/det099
  47. Ostermeier G.C. Miller D., Huntriss J.D., Diamond M.P., Krawetz S.A. Reproductive biology: delivering spermatozoan RNA to the oocyte. Nature. 2004; 429(6988):154. DOI: 10.1038/ 429154a
  48. Luteijn M.J., Ketting R.F. PIWI-interacting RNAs: from generation to transgenerational epigenetics. Nat Rev Genet. 2013; 14(8): 523-34. doi: 10.1038/ nrg3495. Epub 2013 Jun 25.
  49. Jodar M., Selvaraju S., Sendler E., Diamond M.P., Krawetz S.A. Reproductive Medicine Network. The presence, role and clinical use of spermatozoal RNAs. Hum Reprod Update. 2013; 19(6): 604-24. doi: 10.1093/humupd/dmt031. Epub 2013 Jul 14.
  50. Liu W.M., PangR.T., ChiuP.C., WongB.P., LaoK., LeeK.F., Yeung W.S. Sperm-borne microRNA-34c is required for the first cleavage division in mouse. Proc Natl Acad Sci U S A. 2012; 109(2): 490-4. doi: 10.1073/pnas.1110368109. Epub 2011 Dec 27.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies