The potential of contemporary diagnostic imaging modalities for improving assessment of treatment response in patients with locally advanced cervical cancer


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Aim. To investigate the potential of CT perfusion in assessing treatment response in patients with locally advanced cervical cancer undergoing selective chemotherapy in comparison with 18F-fluorodeoxyglucose positron emission tomography-computed tomography (18F-FDG PET-CT). Material and methods. The study included 15 patients with stages IB1 - IIIB cervical cancer, according to FIGO. All patients underwent pelvic ultrasonography and magnetic resonance imaging (MRI), CT perfusion of the uterine cervix, and whole-body 18F-FDG PET- CT at the initial stage and after first-line therapy including 2 courses of regional chemotherapy. Results. Analysis of PET/CT scan results showed that the local complete and partial metabolic response was achieved in 1 (6.7%) and 10 (66.7%) patients, respectively, and 4 (26.6%) patients had stabilization. Spread to extra-pelvic sites (the lungs) occurred in 1 (6.7%) patient, in whom the local progression was defined as stabilization. Dynamic changes in all perfusion parameters, except for BF, were more pronounced in patients with the complete and partial metabolic response. The difference in indicators such as BV and MTT was significantly different in all study groups (with an increase in parallel with the completeness of the metabolic response), while the difference in PS in the groups of complete and partial metabolic response did not differ significantly, but was significantly larger than in the metabolic stabilization group. Conclusion. Perfusion indicators of BVand MTT, before and after treatment, are the most informative in assessing treatment response to selective chemotherapy for locally advanced cervical cancer. There was a correlation between the changes in perfusion indicators such as BV, PS, MTT, and SUVmax in all groups, in comparison with the metabolic response determined by PET/CT.

Full Text

Restricted Access

About the authors

E. V Klimenko

P. Hertsen Moscow Oncology Research Institute - branch of the National Medical Radiology Research Centre of Minzdrav of Russia

Email: elenasherbahina@mail.ru

A. I Khalimon

P. Hertsen Moscow Oncology Research Institute - branch of the National Medical Radiology Research Centre of Minzdrav of Russia

Email: elenasherbahina@mail.ru

N. A Rubtsova

P. Hertsen Moscow Oncology Research Institute - branch of the National Medical Radiology Research Centre of Minzdrav of Russia

A. V Leont’ev

P. Hertsen Moscow Oncology Research Institute - branch of the National Medical Radiology Research Centre of Minzdrav of Russia

S. V Mukhtarulina

P. Hertsen Moscow Oncology Research Institute - branch of the National Medical Radiology Research Centre of Minzdrav of Russia

Email: svmukhtarulina@yandex.ru

K. H.R Mal’tsagova

P. Hertsen Moscow Oncology Research Institute - branch of the National Medical Radiology Research Centre of Minzdrav of Russia

A. G Rerberg

P. Hertsen Moscow Oncology Research Institute - branch of the National Medical Radiology Research Centre of Minzdrav of Russia

E. G Novikova

P. Hertsen Moscow Oncology Research Institute - branch of the National Medical Radiology Research Centre of Minzdrav of Russia

A. D Kaprin

P. Hertsen Moscow Oncology Research Institute - branch of the National Medical Radiology Research Centre of Minzdrav of Russia

References

  1. Каприн А.Д., Старинский В.В., Петрова Г.В. Злокачественные новообразования в России в 2018 году (заболеваемость и смертность). М.: МНИОИ им. П.А. Герцена - филиал ФГБУ «НМИЦ Радиологии» Минздрава России, 2019. 255 с.
  2. Смирнов Ю.А., Богачева Т.М., Валеев Р.Г. Ультразвуковая диагностика в оценке местной распространенности рака шейки матки. Казанский медицинский журнал. 2012; 93(5): 735-8.
  3. Itoh N., Sawairi M., Hanabayashi T., Mori H., Yamawaki Y., Tam ay a T. Neoadjuvant intraarterial infusion chemotherapy with a combination of mitomycin-c, vincristine, and cisplatin for locally advanced cervical cancer: a preliminary report. Gynecol Oncol. 1992; 47(3): 391-4. doi: 10.1016/0090-8258(92)90146-a
  4. Рерберг А.Г., Каприн А.Д., Костин А.А., Новикова Е.Г., Волченко Н.Н., Чулкова О.В., Болотина Л.В., Мухтарулина С.В., Хохриков Т.Н., Сидоров Д.Ю., Геворкян А.Р. Неоадъювантная комбинированная химиотерапия местнораспространенного рака шейки матки. Онкология. Журнал имени П.А. Герцена. 2017; 6(6): 32-7. doi: 10.17116/onkolog20176632-37
  5. Scarabelli C., Zarrelli A., Gallo A., Visentin M.C. Multimodal treatment with neoadjuvant intraarterial chemotherapy and radical surgery in patients with stage iiib-iva cervical cancer. A preliminary study. Cancer. 1995; 76(6): 1019-26. doi: 10.1002/1097-0142(19950915)76:6<1019::aid-cncr2820760616>3.0.co;2-4
  6. Ishikawa H., Kikkawa F., Tamakoshi K., Matsuzawa K., Kawai M., Suganuma N., Tomoda Y. Distribution of platinum in human gynecologic tissues and lymph nodes after intravenous and intraarterial neoadjuvant chemotherapy. Anticancer Res. 1996; 16(6b): 3849-53. PMID: 9042269
  7. Fujiwaki R., Iida K., Ohnishi Y., Watanabe Y., Ryuko K., Takahashi K., Miyazaki K. Intra-arterial neoadjuvant chemotherapy followed by radical surgery and radiotherapy for stage iib cervical carcinoma. Anticancer res. 1997; 17(5b): 3751-5. PMID: 9427774
  8. Sugiyama T., Nishida T., Hasuo Y., Fujiyoshi K., Yakushiji M. Neoadjuvant intraarterial chemotherapy followed by radical hysterectomy and/or radiotherapy for locally advanced cervical cancer. Gynecol Oncol. 1998; 69(2): 130-6. doi: 10.1006/gyno.1998.4976
  9. Вишневская Е.Е., Косенко Н.А. Отдаленные результаты комплексной терапии больных раком шейки матки с неблагоприятным прогнозом. Вопросы онкологии. 1999; 45(4): 420-3.
  10. Usuki N., Hirokawa K., Tashiro T., Saiwai S., Miyamoto T. Intraarterial chemotherapy for uterine cervical adenocarcinoma: evaluation of its efficacy as neoadjuvant therapy. Nihon Igaku Hoshasen Gakkai Zasshi. 1999; 59(12): 670-3. [Article in Japanese]. PMID: 10565169
  11. Therasse P., Eisenhauer E.A., Verweij J. RECIST revisited: a review of validation studies on tumour assessment.Eur J. Cancer. 2006; 8: 1031-9. doi: 10.1016/j. ejca.2006.01.026
  12. Halappa V.G., Corona-Villalobos C.P., Bonekamp S., Li Z., Reyes D.K., Cosgrove D., et al. Neuroendocrine Liver Metastasis Treated by Using Intraarterial Therapy: Volumetric Functional Imaging Biomarkers of Early Tumor Response and Survival. Radiology. 2013; 266(2): 502-513. https://doi. org/10.1148/radiol.12120495
  13. Sousa J.P.L.B.A., Bekhor D., Saito Filho C.F.S., Bretas E.A.S., D'lppolito G. Abdominal perfusion computed tomography: clinical applications, principles and Technique. Radiol Bras. 2012; 45: 39-45.
  14. Sugiyama T., Nishida T., Hasuo Y., Fujiyoshi K., Yakushiji M. Neoadjuvant intraarterial chemotherapy followed by radical hysterectomy and/or radiotherapy for locally advanced cervical cancer. Gynecol Oncol. 1998; 69(2): 130-6. doi: 10.1006/gyno.1998.4976
  15. Kim S., Kamaya A., Willmann J.C.T. Perfusion of the Liver: Principles and Applications in Oncology. Radiology. 2014; 272(2): 322-44. doi: 10.1148/ radiol.14130091.
  16. Axel L. Cerebral blood flow determination by rapid-sequence computed tomography: theoretical analysis. Radiology. 1980; 137(3): 679-86. doi: 10.1148/radiology.137.3.7003648.
  17. Корниенко В.Н., Пронин Н.Н., Пьяных О.С., Фадеева Л.М. Исследование тканевой перфузии головного мозга методом компьютерной томографии. Медицинская визуализация. 2007; 2: 70-81.
  18. Miles K., Hay ball M., Dixon A. Functional images of hepatic perfusion obtained with dynamic CT. Radiology. 1993; 188(2): 405-11. doi: 10.1148/ radiology.188.2.8327686
  19. Долгушин М.Б., Пронин Н.Н., Корниенко В.Н., и др. КТ-перфузия в оценке эффективности лучевой терапии метастатического поражения головного мозга. Медицинская физика. 2008; 2(38): 40-52.
  20. Журавлева М., Шершевер А. С., Трофимова Т.Н. Возможности перфузионной КТ в оценке результатов комбинированного и комплексного лечения глиом головного мозга. Уральский медицинский журнал. 2012; 4 (96): 81-4.
  21. Аптаев Ч., Жолдыбай Ж.Ж., Жакенова Ж.К., Ахметова Г.С., Захырова Х. Перфузионная компьютерная томография в диагностике и оценке эффективности лечения рака желудка. Онкология и радиология Казахстана. 2018; 2(48). 41-4.
  22. Cuneo K. C., Chenevert T. L., Ben-Josef E. et al. A pilot study of diffusion-weighted MRI in patients undergoing neoadjuvant chemoradiation for pancreatic cancer. Transl Oncol. 2014; 7(5): 644-649. doi: 10.1016/j.tranon.2014.07.005.
  23. Nakao A., Kasuya H., Sahin T.T., et al. A phase I. doseescalation clinical trial of intraoperative direct intratumoral injection of HF10 oncolytic virus in non-resectable patients with advanced pancreatic cancer. Cancer Gene Therapy. 2011; 18: 167-75. doi: 10.1038/cgt.2010.65
  24. Shi buy a K., Tsushima Y., Horisoko E., Noda S.E., Taketomi-Takahashi A., Ohno T., Amanuma M., Endo K., Nakano T.J. Blood flow change quantification in cervical cancer before and during radiation therapy using perfusion CT. Radiat Res. 2011; 52(6): 804-11. Epub 2011 Sep 30.
  25. Liu J., Fan H., Qiu G.P., Int J. Vascular permeability determined using multislice spiral CT perfusion can predict response to chemoradiotherapy in patients with advanced cervical squamous cell carcinoma. Clin Pharmacol Ther. 2017; 55(7): 619-26. doi: 10.5414/CP202847.
  26. Li X.S., Fan H.X., Zhu H.X., Song Y.L., Zhou C.W. The value of perfusion CT in predicting the short-term response to synchronous radiochemotherapy for cervical squamous cancer. Eur Radiol. 2012; 22(3): 617-24. doi: 10.1007/ s00330-011-2280-6.
  27. Magne N., Chargari C., Vicenzi L., et al. New trends in the evaluation and treatment of cervix cancer: the role of FDG-PET. Cancer Treat. Rev. 2008; 34(8): 671-81. doi: 10.1016/j.ctrv.2008.08.003.
  28. Grigsby P., Siegel B., Dehdashti F. Lymph node staging by positron emission tomography in patients with carcinoma of the cervix. J. Clin Oncol. 2001; 19(17): 3745-9. doi: 10.1200/JCO.2001.19.17.3745
  29. Wong T., Jones E., Coleman R., et al. Positron emission tomography with 2-deoxy-2- 18 [F]uoro-D-glucose for evaluating local and distant disease in patients with cervical cancer. Mol. Imaging Bio. 2004; 6(1): 55-62. doi: 10.1006/gyno.1993.1268
  30. Chu Y., Zheng A., Wang F., et al. Diagnostic value of F-FDG-PET or PET-CT in recurrent cervical cancer: a systematic review and meta-analysis. Nucl Med Commun. 2014; 35(2): 144-150. doi: 10.1097/MNM.0000000000000026.
  31. Brooks R., Rader J., Dehdashti F., et al. Surveillance FDG-PET detectionof asymptomatic recurrences in patients with cervical cancer. Gynecol Oncol. 2009; 112(1): 104-9. doi: 10.1016/j.ygyno.2008.08.028
  32. Scottish Intercollegiate Guidelines Network. Management of cervical cancer/ (SIGN guideline no 99). 2008.
  33. National Comprehensive Cancer Network (NCCN) guidelines for cervical cancer. 2017.
  34. Young H., Baum R., Cremerius U., et al. Measurement of clinical and subclinical tumour response using 18-Fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group. Eur J. Cancer. 1999; 35(13): 1773-82. doi: 10.1016/s0959-8049(99)00229-4
  35. Wang X., Koch S. Positron emission tomography/computed tomography potential pitfalls and artifacts. Curr Probl Diagn Radiol. 2009; 38(4): 156-69. doi: 10.1067/j.cpradiol.2008.01.001.
  36. Amit A., Person O., Keidar Z. FDG PET/CT in monitoring response to treatment in gynecological malignancies. Curr Opin Obstet Gynecol. 2013; 25(1):17-22. http://dx.doi.org/10.1097/GCO.0b013e32835a7e96
  37. Young H., Baum R., Cremerius U., at all. Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group. Eur J. Cancer. 1999; 35(13): 1773-82. doi: 10.1016/s0959-8049(99)00229-4
  38. Wahl R.L., Jacene H., Kasamon Y., Lodge M.A. From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors. J. Nucl Med. 2009; 50 Suppl 1:122S-50S. doi: 10.2967/jnumed.108.057307.
  39. Schwarz J., Grigsby P., Dehdashti F., et al. The role of 18F-FDG PET in assessing therapy response in cancer of the cervix and ovaries. J. Nucl Med. 2009; 50(1): 64S-73S. doi: 10.2967/jnumed.108.057257.
  40. Grigsby P., Siegel B., Dehdashti F., et al. Posttherapy [18F] fluorodeoxyglucose positron emission tomography in carcinoma of the cervix: response and outcome. J. Clin Oncol. 2004; 22(11): 2167-71. doi: 10.1200/JCO.2004.09.035
  41. Avril N., Sassen S., Schmalfeldt B., et al. Prediction of response to neoadjuvant chemotherapy by sequential F-18-fluorodeoxyglucose positron emission tomography in patients with advanced-stage ovarian cancer. J. Clin Oncol. 2005; 23(30):7445-53. doi: 10.1200/JCO.2005.06.965
  42. Banks T.I., von Eyben R., Hristov D., Kidd E.A. Pilot study of combined FDG-PET and dynamic contrast-enhanced CT of locally advanced cervical carcinoma before and during concurrent chemoradiotherapy suggests association between changes in tumor blood volume and treatment response. Cancer Med. 2018; 7(8): 3642-51. doi: 10.1002/cam4.1632.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies