Role of class I HLA (G, E, and C) expression in early reproductive losses


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

In 50-80% of cases, immunological factors are the main causes of early reproductive losses with a normal karyotype of the fetus, as the immune system has been proven to play one of the major roles in the processes of fertilization, implantation, and placentation. The basis of whole-body immunity is the system of HLA (Human Leukocyte Antigen), a highly polymorphic locus containing the genes, the products of which control the interaction of the body’s all immunocompetent cells, recognize their own and foreign (including altered own) cells, trigger and implement an immune response. The review presents data on class I HLA genes that have central functions in antigen processing and presentation, inhibit a NK cell receptor, which leads to a decrease in the immune response at the mother-fetus interface, and provide immune tolerance to the fetus. HLA-E and HLA-C expression is noted to have a special role in the successful occurrence of pregnancy. HLA-G is expressed by the cells of cytotrophoblast, placenta, and amnion in a tissue-specific manner. Three meta-analyses have shown an association between HLA-G 14-bp ins polymorphism and recurrent miscarriage (especially in women with a history of three or more spontaneous miscarriages). Class I HLA genes, as a modulator of the immune system, have a protective effect at all implantation stages.

Full Text

Restricted Access

About the authors

Margarita O. Bakleicheva

D.O. Ott Research Institute of Obstetrics, Gynecology, and Reproductology

Email: bakleicheva@gmail.com
junior research scientist

Olesya N. Bespalova

D.O. Ott Research Institute of Obstetrics, Gynecology, and Reproductology

MD, deputy director for research

Tatiana E. Ivashchenko

D.O. Ott Research Institute of Obstetrics, Gynecology, and Reproductology

PhD, D.Sc., leading researcher of Department of Genomic medicine, of Biological Sciences, Professor

References

  1. Hassold T., Hunt P. Maternal age and chromosomally abnormal pregnancies: what we know and what we wish we knew. Curr. Opin. Pediatr. 2009; 21(6): 703-8. https://dx.doi.org/10.1097/M0P.0b013e328332c6ab.
  2. Чиряева О.Г., Пендина А.А., Тихонов А.В., Ефимова О.А., Петрова Л.И., Дудкина В.С., Садик Н.А., Кузнецова Т.В., Баранов В.С., Галембо И.А. Сравнительный анализ аномалий криотипа при неразвивающейся беременности, наступившей естественным путем и с применением вспомогательных репродуктивных технологий. Журнал акушерства и женских болезней. 2012; 61(3): 132-40.
  3. Garcia-Enguidanos A., Calle M.E., Valero J., Luna S., Dominguez-Rojas V. Risk factors in miscarriage: a review. Eur. J. Obstet. Gynecol. Reprod. Biol. 2002; 102(2): 111-9. https://dx.doi.org/10.1016/s0301-2115(01)00613-3.
  4. Miskovic S., Culic V., Konjevoda P., Pavelic J. Positive reproductive family history for spontaneous abortion: predictor for recurrent miscarriage in young couples. Eur. J. Obstet. Gynecol. Reprod. Biol. 2012; 161(2): 182-6. https:// dx.doi.org/10.1016/j.ejogrb.2011.12.027.
  5. Пендина А.А., Ефимова О.А., Каминская А.Н., Кузнецова Т.В., Баранов В.С. Иммуноцитохимический анализ статуса метилирования метафазных хромосом человека. Цитология. 2005; 47(8): 731-7.
  6. Пендина А.А., Гринкевич В.В., Кузнецова Т.В., Баранов B.C. Метилирование ДНК - универсальный механизм регуляции активности генов. Экологическая генетика. 2004; 2(1): 27-37.
  7. Carp H., ed. Recurrent pregnancy loss: Causes, controversies and treatment. 2nd ed. CRS Press; 2014: 255-61.
  8. Christiansen O.B., Steffensen R., Nielsen H.S., Varming K. Multifactorial etiology of recurrent miscarriage and its scientific and clinical implications. Gynecol. Obstet. Invest. 2008; 66(4): 257-67. https://dx.doi.org/ 10.1159/000149575.
  9. Хачатрян Н.А., Кречетова Л.В., Тетруашвили Н.К. Аллоиммунные механизмы привычного выкидыша. Акушерство и гинекология. 2014; 5: 3-8.
  10. Grene E., Pinto L.A., Kwak-Kim J.Y., Kessler H.A., Beer A.E., Shearer G.M. Increased levels of anti-CCR5 antibodies in sera from individuals immunized with allogeneic lymphocytes AIDS. 2000; 14(16): 2627-8. doi: 10.1097/00002030200011100-00035
  11. Choudhury S.R., Knapp L.A. Human reproductive failure I: Immunological factors. Hum. Reprod. Update. 2001; 7(2): 113-34. https://dx.doi.org/ 0.1093/ humupd/7.2.113.
  12. Klein J., Sato A. The HLA system. First of two parts. N. Engl. J. Med. 2000; 343(10): 702-9.
  13. Пальцев М.А., ред. Введение в молекулярную медицину. М.: Медицина; 2004: 319-37.
  14. Смолянинов А.Б., Жаров Е.В., Козлов К.Л., Кириллов К.А. Основы клеточной и генной терапии сердечно-сосудистых заболеваний. М.; 2005.
  15. Рабсон А., Ройт А., Делвз П. Основы медицинской иммунологии. Пер. с англ. М.: Мир; 2006. [Rabson A., Roitt I.M., Delves P.J. Really essential medical immunology. 2nd ed. Wiley-Blackwell; 2004.
  16. Хорошкеева О.В., Тетруашвили Н.К., Бурменская О.В., Агаджанова А.А., Трофимов Д.Ю. Роль антигенов главного комплекса гистосовместимости в реализации привычного выкидыша. Акушерство и гинекология. 2016; 3: 5-11. https://dx.doi.org/10.18565/ aig.2016.3.5-10.
  17. Агнаева А. О., Беспалова О.Н. Ранние эмбриональные потери при HLA совместимости супругов. Журнал акушерства и женских болезней. 2015; 64(3): 69-80. https://dx.doi.org/10.17816/JOWD64369-80.
  18. Xiong S., Sharkey A.M., Kennedy P.R., Gardner L., Farrell L.E., Chazara O. et al. Maternal uterine NK cell-activating receptor KIR2DS1 enhances placentation. J. Clin. Invest. 2013; 123(10): 4264-72. https://dx.doi.org/ 10.1172/JCI68991.
  19. Dambaeva S. V., Lee D.H., Sung N., Chen C. Y., Bao S., Gilman-Sachs A. et al. Recurrent pregnancy loss in women with killer cell immunoglobulin-like receptor KIR2DS1 is associated with an increased HLA-C2 allelic frequency. Am. J. Reprod. Immunol. 2016; 75(2): 94-103. https://dx.doi.org/10.1111/ aji.12453.
  20. Medawar P.B. Some immunological and endocrinologicalproblemsraised by the evolution of viviparity in vertebrates. Symp. Soc. Exp. Biol. 1953; 7: 320-38.
  21. Li F., Xu Y., Xu X., Xu B., Zhao J., Zhang X. Fms-related tyrosine kinase 3 ligand promotes proliferation of placenta amnion and chorion mesenchymal stem cells in vitro. Mol. Med. Rep. 2014; 10(1): 322-8. https://dx.doi.org/10.3892/ mmr.2014.2220.
  22. LeMaoult J., Daouya M., Wu J., Loustau M., Horuzsko A., Carosella E.D. Synthetic HLA-G proteins for therapeutic use in transplantation. FASEB J. 2013; 27(9): 3643-51. https://dx.doi.org/10.1096/fj.13-228247.
  23. Morandi F., Pistoia V. Soluble HLA-G modulates miRNA-210 and miRNA-451 expression in activated CD4+ T. lymphocytes. Int. Immunol. 2013; 25(5): 27985. https://dx.doi.org/10.1093/intimm/dxs108.
  24. Yao G.D., Shu Y.M., ShiS.L., Peng Z.F., Song W.Y., JinH.X., Sun Y.P. Expression and potential roles of HLA-G in human spermatogenesis and early embryonic development. PLoS One. 2014; 9(3): e92889. https://dx.doi.org/10.1371/ journal.pone.0092889.
  25. Da Silva G.K., Vianna P., Veit T.D., Crovella S., Catamo E., Cordero E.A. et al. Influence of HLA-G polymorphisms in human immunodeficiency virus infection and hepatitis C. virus co-infection in Brazilian and Italian individuals. Infect Genet. Evol. 2014; 21: 418-23. https://dx.doi.org/10.1016/j. meegid.2013.12.013.
  26. Donadi E.A., Castelli E.C., Arnaiz-Villena A., Roger M., Rey D., Moreau P. Implications of the polymorphism of HLA-G on its function, regulation, evolution and disease association. Cell. Mol. Life Sci. 2011; 68(3): 369-95. https://dx.doi.org/10.1007/s00018-010-0580-7.
  27. Lynge Nilsson L., Djurisic S., Hviid T.V. Controlling the immunological crosstalk during conception and pregnancy: HLA-G in reproduction. Front. Immunol. 2014; 5: 198. https://dx.doi.org/10.3389/fimmu.2014.00198.
  28. Carosella E.D., Rouas-Freiss N., Tronik-Le Roux D., Moreau P., LeMaoult J. Advances in Immunology. 2015; 127: 33-144. doi: 10.1016/bs.ai.2015.04.001
  29. Nardi Fda S., Slowik R., Wowk P.F., da Silva J.S., Gelmini G.F., Michelon T.F. et al. Analysis of HLA-G polymorphisms in couples with implantation failure. Am. J. Reprod. Immunol. 2012; 68(6): 507-14. https://dx.doi.org/10.1111/aji.12001.
  30. Sipak-Szmigiel O., Cybulski C., Wokoforczyk D., Lubinski J., Kurzawa R., Baczkowski T. et al. HLA-G polymorphism and in vitro fertilization failure in a Polish population. Tissue Antigens. 2009; 73(4): 348-52. https://dx.doi. org/10.1111/j.1399-0039.2008.01205.x.
  31. Fan W., Li S., Huang Z., Chen Q. Relationship between HLA-G polymorphism and susceptibility to recurrent miscarriage: a meta-analysis of non-family-based studies. J. Assist. Reprod. Genet. 2014; 31(2): 173-84. https://dx.doi.org/10.1007/s10815-013-0155-2.
  32. Meuleman Т., Lashley L.E., Dekkers O.M., van Lith J.M., Claas F.H., Bloemenkamp K. W. HLA associations and HLA sharing in recurrent miscarriage: A systematic review and meta-analysis. Hum. Immunol. 2015; 76(5): 362-73. https://dx.doi.Org/10.1016/j.humimm.2015.02.004.
  33. Castro M.J., Morales P., Fernandez-Soria V., Suarez B., Recio M.J., Alvarez М., et al. Allelic diversity at the primate Mhc-G locus: exon 3 bears stop codons in all Cercopithecinae sequences. Immunogenetics. 1996; 43(6): 327-36.
  34. Аленичев А. С., Насыхова Ю.А., Иващенко Е.Э., Баранов В. С. Характеристика генетической структуры популяции Северо-Западного региона РФ по гену HLA-G. Экологическая генетика. 2014; 12(2): 74-80.
  35. Rousseau P., Le Discorde М., Mouillot G., Marcou C., Carosella E.D., Moreau P. The 14 bp deletion-insertion polymorphism in the 3’ UT region of the HLA-G gene influences HLA-G mRNA stability. Hum. Immunol. 2003; 64(11): 1005 10. https://dx.doi.Org/10.1016/j.humimm.2003.08.347
  36. Glas J., Torok H.P., Tonenchi L., Wetzke М., Beynon V., Teshome M.Y. et al. The 14-bp deletion polymorphism in the HLA-G gene displays significant differences between ulcerative colitis and Crohn’s disease and is associated with ileocecal resection in Crohn’s disease. Int. Immunol. 2007; 19(5): 621-6. https:// dx.doi.org/10.1093/intimm/dxm027.
  37. Friedlander M.R., Lizano E., Houben A.J., Bezdan D., Banez-Coronel М., Kudla G. et al. Evidence for the biogenesis of more than 1,000 novel human microRNAs. Genome Biol. 2014; 15(4): R57. https://dx.doi.org/10.1186/gb-2014-15-4-r57.
  38. Zhu X.M., Han Т., Wang X.H., Li Y.H., Yang H.G., Luo Y.N. et al. Overexpression of miR-152 leads to reduced expression of human leukocyte antigen-G and increased natural killer cell mediated cytolysis in JEG-3 cells. Am. J. Obstet. Gynecol. 2010; 202(6): 592. el-7, https://dx.doi.org/10.1016/ j.ajog.2010.03.002.
  39. Zhang X., Yu L., Bing Y. Human leukocyte antigen G and miR-148a are associated with the pathogenesis of intrahepatic cholestasis of pregnancy. Exp. Ther. Med. 2014; 8(6): 1701-6. https://dx.doi.org/10.3892/etm.2014.1986.
  40. Wang X., Li B., Wang J., Lei J., Liu C., Ma Y., Zhao H. Evidence that miR-133a causes recurrent spontaneous abortion by reducing HLA-G expression. Reprod. Biomed. Online. 2012; 25(4): 415-24. https://dx.doi.org/10.1016/ j.rbmo.2012.06.022.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies