Current views on microbiota in gynecology


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The paper reviews publications on the microbiota state in endometriosis, various endometrial abnormalities (endometrial polyps, endometrial hyperplasia, chronic endometritis), and endometrial cancer, as well as in infertility. The investigators identified certain microorganisms that can be potentially considered as predictors for the effectiveness of assisted reproductive technology (ART) programs. An analysis of the literature proves the relationship of microbiome disorders to the development of benign and malignant diseases. The investigation results raise questions regarding the molecular mechanisms of tissue and cellular homeostatic disorders between the microbiota and the human body in various pathological processes. These support the expediency of conducting investigations in this area.

Full Text

Restricted Access

About the authors

Gyuzyal I. Tabeeva

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: doctor.gtab@gmail.com
Ph. D., senior researcher of the Department of gynecological endocrinology

Madina R. Dumanovskaya

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Ph. D., researcher of the Department of gynecological endocrinology

Galina E. Chernukha

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

MD, Professor, head of the Department of gynecological endocrinology

Tatyana V. Priputnevich

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

doctor of medical Sciences, head of Department of Microbiology, clinical pharmacology and epidemiology

References

  1. Никонов Е.Л., Гуревич К.Г. Микробиота различных локусов организма. Научный доклад. М.: Российская академия наук; 2017.
  2. Shahanavaj K., Gil-Bazo I., Castiglia M., Bronte G., Passiglia F., Carreca A.P. et al. Cancer and the microbiome: potential applications as new tumor biomarker. Expert Rev. Anticancer Ther. 2015; 15(3): 317-30. https://dx.doi.org/10.1586/ 14737140.2015.992785.
  3. Schwabe R.F., Jobin C. The microbiome and cancer. Nat. Rev. Cancer. 2013; 13(11): 800-12. https://dx.doi.org/10.1038/nrc3610.
  4. Garrett W.S. Cancer and the microbiota. Science. 2015; 348(6230): 80-6. https://dx.doi.org/10.1126/science.aaa4972.
  5. Чаплин А.В., Ребриков Д.В., Болдырева М.Н. Микробиом человека. Вестник Российского государственного медицинского университета. 2017; 2: 5-13.
  6. Xu X., Wang Z., Zhang X. The human microbiota associated with overall health. Crit. Rev. Biotechnol. 2015; 35(1): 129-40. https://dx.doi.org/10.3109/073885 51.2013.819485.
  7. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012; 486(7402): 207-14. https:// dx.doi.org/10.1038/nature11234.
  8. Попенко А. С. Биоинформационное исследование таксономического состава микробиоты кишечника человека: дисс. канд. биол. наук. М.; 2014.
  9. Sharpton T.J. An introduction to the analysis of shotgun metagenomic data. Front. Plant Sci. 2014; 5: 209. https://dx.doi.org/10.3389/fpls.2014.00209.
  10. Анкирская А.С., Муравьева В.В. Опыт микробиологической диагностики оппортунистических инфекций влагалища. Клиническая микробиология и антимикробная химиотерпия. 2001; 3(2): 190-4.
  11. Koeth R.A., Wang Z., Levison B.S., Buffa J.A., OrgE., Sheehy B.T. et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 2013; 19(5): 576-85. https://dx.doi.org/10.1038/ nm.3145.
  12. Припутневич Т.В., Мелкумян А.Р. Масс-спектрометрия - новое слово в клинической микробиологии. Клиническая лабораторная диагностика. 2016; 61(12): 842-8.
  13. Gajer P., Brotman R.M., Bai G., Sakamoto J., Schutte U.M., Zhong X. et al. Temporal dynamics of the human vaginal microbiota. Sci. Transl. Med. 2012; 4(132):132ra52. https://dx.doi.org/10.1126/scitranslmed.3003605.
  14. Mendling W. Vaginal microbiota. Adv. Exp. Med. Biol. 2016; 902: 83-93. https:// dx.doi.org/10.1007/978-3-319-31248-4_6.
  15. Krauss-Silva L., Moreira M.E., Alves M.B., Rezende M.R., Braga A., Camacho K.G. et al. Randomized controlled trial of probiotics for the prevention of spontaneous preterm delivery associated with intrauterine infection: study protocol. Reprod. Health. 2010; 7: 14. https://dx.doi.org/10.1186/1742-4755-7-14.
  16. Sirota I., Zarek S.M., Segars J.H. Potential influence of the microbiome on infertility and assisted reproductive technology. Semin. Reprod. Med. 2014; 32(1): 35-42. https://dx.doi.org/10.1055/s-0033-1361821.
  17. Kira E.F., Berlev I.V., Molchanov O.L. Features of pregnancy, childbirth and the postpartum period in women with vaginal dysbiotic disorders. J. Obstet. Gynecol. Dis. 1999; 47(2): 8-11.
  18. Ravel J., Gajer P., Abdo Z., Schneider G.M., Koenig S.S., McCulle S.L. et al. Vaginal microbiome of reproductive - age women. Proc. Natl. Acad. Sci. USA. 2011; 108(Suppl. 1): 4680-7. https://dx.doi.org/10.1073/pnas.1002611107.
  19. Савицкая К.И., Воробьев А.А., Молочков В.А., Зур Н.В. Нормальная микрофлора генитального тракта здоровых женщин репродуктивного возраста. Вестник Российской академии медицинский наук. 2003; 9: 48-52.
  20. Hyman R.W., Herndon C.N., Jiang H., Palm C., Fukushima M., Bernstein D. et al. The dynamics of the vaginal microbiome during infertility therapy with in vitro fertilization-embryo transfer. J. Assist. Reprod. Genet. 2012; 29(2): 105-15. https://dx.doi.org/10.1007/s10815-011-9694-6.
  21. Salah R.M., Allam A.M., Magdy A.M., Mohamed A.Sh. Bacterial vaginosis and infertility: cause or association? Eur. J. Obstet. Gynecol. Reprod. Biol. 2013; 167(1): 59-63. https://dx.doi.org/10.1016/j.ejogrb.2012.10.031.
  22. Haahr T., Jensen J.S., Thomsen L., Duus L., Rygaard K., Humaidan P. Abnormal vaginal microbiota may be associated with poor reproductive outcomes: a prospective study in IVF patients. Hum. Reprod. 2016; 31(4): 795-803. https:// dx.doi.org/10.1093/humrep/dew026.
  23. Khan K.N., Fujishita A., Masumoto H., Muto H., Kitajima M., Masuzaki H., Kitawaki J. Molecular detection of intrauterine microbial colonization in women with endometriosis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2016; 199: 69-75. https://dx.doi.org/10.1016/j.ejogrb.2016.01.040.
  24. Bailey M.T., Coe C.L. Endometriosis is associated with an altered profile of intestinal microflora in female rhesus monkeys. Hum. Reprod. 2002; 17(7): 1704-8. https://dx.doi.org/10.1093/humrep/17.7.1704.
  25. Jess T., Frisch M., Jorgensen K.T., Pedersen B.V., Nielsen N.M. Increased risk of inflammatory bowel disease in women with endometriosis: a nationwide Danish cohort study. Gut. 2012; 61(9): 1279-83. https://dx.doi.org/10.1136/ gutjnl-2011-301095.
  26. At a B., Yildiz S., Turkgeldi E., Brocal V.P., Dinleyici E.C., Moya A., Urman B. The Endobiota Study: Comparison of vaginal, cervcal and gut microbiota between women with stage 3/4 endometriosis and healthy controls. Scientific Rep. 2019; 9(1): 2204. https://dx.doi.org/10.1038/ s41598-019-39700-6.
  27. Zhang X., Xu H., Lin J., Qian Y., Deng L. Peritoneal fluid concentrations of interleukin-17 correlate with the severity of endometriosis and infertility of this disorder. BJOG. 2005; 112(8): 1153-5. https://dx.doi.org/10.1111/j.1471-0528.2005.00639.x.
  28. Benner M., Ferwerda G., Joosten I., van der Molen R.G. How uterine microbiota might be responsible for a receptive, fertile endometrium. Hum. Reprod. Update. 2018; 24(4): 393-415. https://dx.doi.org/10.1093/humupd/dmy012.
  29. Wira C.R., Rodriguez-Garcia M., Patel M.V. The role of sex hormones in immune protection of the female reproductive tract. Nat. Rev. Immunol. 2015; 15: 21730. https://dx.doi.org/10.1038/nri3819.
  30. Mitchell C.M., Haick A., Nkwopara E., Garcia R., Rendi M., Agnew K., Fredricks D.N., Eschenbach D. Colonization of the upper genital tract by vaginal bacterial species in nonpregnant women. Am. J. Obstet. Gynecol. 2015; 212(5): 611. e1-9. https://dx.doi.org/10.1016/j.ajog.2014.11.043.
  31. Wexler H.M. Bacteroides: the good, the bad, and the nitty-gritty. Clin. Microbiol. Rev. 2007; 20(4): 593-621. https://dx.doi.org/10.1128/CMR.00008-07.
  32. Maier E., Anderson R., Roy N. Understanding how commensal obligate anaerobic bacteria regulate immune functions in the large intestine. Nutrients. 2015; 7(1): 45-73. https://dx.doi.org/10.3390/nu7010045.
  33. Yu Y., Lu L., Sun J., Petrof E.O., Claud E.C. Preterm infant gut microbiota affects intestinal epithelial development in a humanized microbiome gnotobiotic mouse model. Am. J. Physiol. Gastrointest. Liver Physiol. 2016; 311: G521-32.
  34. Cario E., Gerken G., Podolsky D.K. Toll-like receptor 2 controls mucosal inflammation by regulating epithelial barrier function. Gastroenterology. 2007; 132(4): 1359-74. https://dx.doi.org/10.1053/j.gastro.2007.02.056.
  35. Walther-Antonio M.R., Chen J., Multinu F., Hokenstad A., Distad T.J., Cheek E.H. et al. Potential contribution of the uterine microbiome in the development of endometrial cancer. Genome Med. 2016; 8(1): 122. https://dx.doi.org/10.1186/ s13073-016-0368-y.
  36. Franasiak J.M., Forman E.J., Patounakis G., Hong K.H., Werner M.D., Upham K.M. et al. Investigating the impact of the timing of blastulation on implantation: management of embryo-endometrial synchrony improves outcomes. Hum. Reprod. Open. 2018; 2018(4): hoy022. https://dx.doi. org/10.1093/hropen/hoy022.
  37. Tao X., Franasiak J.M., Zhan Y., Scott R.T., Rajchel J., Bedard J. et al. Characterizing the endometrial microbiome by analyzing th ultra-low bacteria from embryo transfer catheter tips in IVF cycles: next generation sequencing (NGS) analysis of the 16S ribosomal gene. Hum. Microbiome J. 2017; 3: 15-21. https://dx.doi.org/10.1016Zj.humic.2017.01.004.
  38. Verstraelen H., Vilchez-Vargas R., Desimpel F., Jauregui R., Vankeirsbilck N., Weyers S. et al. Characterisation of the human uterine microbiome in nonpregnant women through deep sequencing of the V1-2 region of the 16S rRNA gene. Peer J. 2016; 4: e1602. https://dx.doi.org/10.7717/peerj.1602.
  39. Kyono K., Hashimoto T., Nagai Y., Sakuraba Y. Analysis of endometrial microbiota by 16S ribosomal RNA gene sequencing among infertile patients: a single-center pilot study. Reprod. Med. Biol. 2018; 17(3): 297-306. https:// dx.doi.org/10.1002/rmb2.12105.
  40. Soularue E., Lepage P., Colombel J.F., Coutzac C., Faleck D., Marthey L. et al. Enterocolitis due to immune checkpoint inhibitors: a systematic review. Gut. 2018; 67(11): 2056-67. https://dx.doi.org/10.1136/gutjnl-2018-316948.
  41. Fang R.L., Chen L.X., Shu W.S., Yao S.Z., Wang S.W., Chen Y.Q. Barcoded sequencing reveals diverse intrauterine microbiomes in patients suffering with endometrial polyps. Am. J. Transl. Res. 2016; 8(3): 1581-92.
  42. Ren W., Yu R., Liu G., Li N., Peng Y., Wu M. et al. DNA vaccine encoding the major virulence factors of Shiga toxin type 2e (Stx2e)-expressing Escherichia coli induces protection in mice. Vaccine. 2013; 31(2): 367-72. https://dx.doi. org/10.1016/j.vaccine.2012.10.107.
  43. Nougayrede J.P., Homburg S., Taieb F., Boury M., Brzuszkiewicz E., Gottschalk G. et al. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science. 2006; 313(5788): 848-51. https://dx.doi.org/10.1126/science.1127059.
  44. Mert I., Walther-Antonio M., Mariani A. Case for a role of the microbiome in gynecologic cancers: Clinician’s perspective. J. Obstet. Gynaecol. Res. 2018; 44(9): 1693-704. https://dx.doi.org/10.1111/jog.13701.
  45. O’Hanlon D.E., Moench T.R., Cone R.A. Vaginal pH and microbicidal lactic acid when Lactobacilli dominate the microbiota. PLoS One. 2013; 8(11): e80074. https://dx.doi.org/10.1371/journal.pone.0080074.
  46. Rudney J.D., Chen R., Sedgewick G.J. Intracellular Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis in buccal epithelial cells collected from human subjects. Infect. Immun. 2001; 69(4): 2700-7. https://dx.doi.org/10.1128/IAI.69.4.2700-2707.2001.
  47. Nomura A., Stemmermann G.N., Chyou P.H., Kato I., Perez-Perez G.I., Blaser M.J. Helicobacter pylori infection and gastric carcinoma among Japanese Americans in Hawaii. N. Engl. J. Med. 1991; 325(16): 1132-6.
  48. Ahn J., Sinha R., Pei Z., Dominianni C., Wu J., Shi J. et al. Human gut microbiome and risk of colorectal cancer. J. Natl. Cancer Inst. 2013; 105(24): 1907-11. https://dx.doi.org/10.1093/jnci/djt300.
  49. Renehan A.G., Tyson M., Egger M., Heller R.F., Zwahlen M. Body-mass index and incidence of cancer: A systematic review and meta-analysis of prospective observational studies. Lancet. 2008; 371(9612): 569-78. https:// dx.doi.org/10.1016/S0140-6736(08)60269-X.
  50. Ley R.E., Peterson D.A., Gordon J.I. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006; 124(4): 837-48. https:// dx.doi.org/10.1016/j.cell.2006.02.017.
  51. Turnbaugh P.J., Ley R.E., Mahowald M.A., Magrini V., Mardis E.R., Gordon J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006; 444(7721): 1027-31. https://dx.doi.org/10.1038/nature05414.
  52. Gadelle D., Raibaud P., Sacquet E. beta-Glucuronidase activities of intestinal bacteria determined both in vitro andin vivo in gnotobiotic rats. Appl. Environ. Microbiol. 1985; 49(3): 682-5.
  53. Dabek M., McCrae S.I., Stevens V.J., Duncan S.H., Louis P. Distribution of beta-glucosidase and beta-glucuronidase activity and of beta-glucuronidase gene gus in human colonicbacteria. FEMS Microbiol. Ecol. 2008; 66(3): 487-95. https://dx.doi.org/10.1111/j.1574-6941.2008.00520.x.
  54. McIntosh F.M., Maison N., Holtrop G., Young P., Stevens V.J., Ince J. et al. Phylogenetic distribution of genes encoding beta-glucuronidase activity inhuman colonic bacteria and the impact of diet on faecal glycosidase activities. Environ. Microbiol. 2012; 14(8): 1876-87. https://dx.doi.org/10.1111/ j.1462-2920.2012.02711.x.
  55. Plottel C.S., Blaser M.J. Microbiome and malignancy. Cell Host Microbe. 2011; 10(4): 324-35. https://dx.doi.org/10.1016/j.chom.2011.10.003.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies