Medical decision support systems in obstetrics: opportunities and prospects


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

This literature review is dedicated to the medical decision support system (MDSS), a promising area in clinical medicine, which is gaining recognition and dissemination. The authors describe 23 key publications on MDSS in the period from 2008 to 2019, review potential and realized opportunities, limitations, features of introducing and using MDSS, and also consider solutions in obstetrics and related specialties. They give a classification of mathematical methods used in the creation of decision-making models and provide explanations of the advantages and disadvantages of various MDSS implementations. The authors identify 9 publications on complicated pregnancy, 6 on childbirth and decision-making support during obstetric care, 4 on the evaluation of the fetal status, and 4 universal systems. They present hypercoagulable states, hypertensive disorders, systemic lupus erythematosus, gestational diabetes mellitus, miscarriage, and ectopic pregnancy among the examined pathologies during pregnancy. The review also includes works on the detection of fetal abnormalities and fetal distress syndrome. Searching for publications revealed no articles on the description or introduction of MDSS in obstetrics; however, the review also presents Russian works on the development of MDSS in related medicine fields. The authors formulate the conclusions that despite a significant number of experimental developments, the main difficulties occur when implementing the results of studies in real clinical practice; at the same time, the introduction is generally limited to the framework of individual health care facilities.

Full Text

Restricted Access

About the authors

Olga S. Altukhova

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: olg333@yandex.ru
Software Engineer, Bioinformatics Laboratory

Ivan S. Balashov

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: i_balashov@oparina4.ru
Junior Researcher, Bioinformatics Laboratory

Ksenia A. Gorina

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: k_gorina@oparina4.ru
Junior researcher the Department of Pregnancy Pathology

Vadim V. Lagutin

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: laggi@mail.ru
Software Engineer, Bioinformatics Laboratory

Vladimir A. Naumov

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: looongdog@gmail.com
Researcher, Bioinformatics Laboratory

Pavel I. Borovikov

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: p_borovikov@oparina4.ru
Head of Bioinformatics Laboratory

Zulfiya S. Khodzhaeva

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: z_khodzhaeva@oparina4.ru
Khodzhaeva, Deputy Director of Obstetrics Institute

References

  1. Torigoe I., Shorten A. Using a pregnancy decision support program for women choosing birth after a previous caesarean in Japan: A mixed methods study. Women Birth. 2018; 31(1): e9-e19. https://dx.doi.org/10.1016/j. wombi.2017.06.001.
  2. Seitinger A., Rappelsberger A., Leitich H., Binder M., Adlassnig K.P. Executable medical guidelines with Arden Syntax-Applications in dermatology and obstetrics. Artif. Intell. Med. 2018; 92: 71-81. https://dx.doi.org/10.1016/j. artmed.2016.08.003.
  3. Lewandrowski K. Integrating decision support into a laboratory utilization management program. Clin. Lab. Med. 2019; 39(2): 245-57. https://dx.doi. org/10.1016/j.cll.2019.01.004.
  4. Ramos J.G., Perondi B., Dias R.D., Miranda L.C., Cohen C., Carvalho C.R. et al. A decision-aid tool for ICU admission triage is associated with a reduction in potentially inappropriate intensive care unit admissions. J. Crit. Care. 2019; 51: 77-83. https://dx.doi.org/10.1016/j.jcrc.2019.02.002.
  5. Faria D.K., Taniguchi L.U., Fonseca L.A.M., Ferreira-Junior M., Aguiar F.J.B., Lichtenstein A. et al. Improving serum calcium test ordering according to a decision algorithm. J. Clin. Pathol. 2019; 72(3): 232-6. https://dx.doi. org/10.1136/jclinpath-2018-205026.
  6. Akbulut A., Ertugrul E., Topcu V. Fetal health status prediction based on maternal clinical history using machine learning techniques. Comput. Methods Programs Biomed. 2018; 163: 87-100. https://dx.doi.org/10.1016/j.cmpb.2018.06.010.
  7. Van Belle V.M., Van Calster B., Timmerman D., Bourne T., Bottomley C., Valentin L. et al. A mathematical model for interpretable clinical decision support with applications in gynecology. PLoS One. 2012; 7(3): e34312. https://dx.doi. org/10.1371/journal.pone.0034312.
  8. Halpi K.L., Paprocki E.L., McDonough R.J. Utilizing health information technology to improve the recognition and management of life-threatening adrenal crisis in the pediatric emergency department: medical alert identification in the 21st century. J. Pediatr. Endocrinol. Metab. 2019; 32(5): 513-8. https:// dx.doi.org/10.1515/jpem-2018-0566.
  9. Itani S., Lecron F, Fortemps P. Specifics of medical data mining for diagnosis aid: a survey. Expert Syst. Appl. 2019; 118: 300-4. https://dx.doi.org/10.1016/j. eswa.2018.09.056.
  10. Hyafil L., Rivest R.L. Constructing optimal binary decision trees is NP-complete. Inf. Process. Lett. 1976; 5(1): 15-7. https://dx.doi.org/10.1016/0020-0190(76)90095-8.
  11. Bramer M. Principles of data mining. London: Springer; 2007.
  12. Deng H., Runge G., Tuv E. Bias of importance measures for multi-valued attributes and solutions. Springer; 2011: 293-300.
  13. D’Souza R., Shah P.S., Sander B. Clinical decision analysis in perinatology. Acta Obstet. Gynecol. Scand. 2018; 97(4): 491-9. https://dx.doi.org/10.1111/ aogs.13264.
  14. Miller M.K., Mollen C., Behr K., Dowd M.D., Miller E., Satterwhite C.L. et al. Development of a novel computerized clinical decision support system to improve adolescent sexual health care provision. Acad. Emerg. Med. 2019; 26(4): 420-33. https://dx.doi.org/10.1111/acem.13570.
  15. Gorthi A., Firtion C., Vepa J. Automated risk assessment tool for pregnancy care. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2009: 6222-5.
  16. Moreira M.W.L., Rodrigues J.J.P.C., Kumar N., Niu J., Woungang I. Performance assessment of decision tree-based predictive classifiers for risk pregnancy care. In: GLOBECOM 2017 - 2017 IEEE Global Communications Conference. 2017: ID: 30231937. https://dx.doi.org/10.1109/GL0C0M.2017.8254451.
  17. Bourgani E., Stylios C.D., Manis G., Georgopoulos V.C. Timed fuzzy cognitive maps for supporting obstetricians’ decisions. In: 6th European Conference of the International Federation for Medical and Biological Engineering. 2015: 753-6.
  18. Douali N., Dollon J., Jaulent M.C. Personalized prediction of gestational Diabetes using a clinical decision support system. In: 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2015: ID: 6494264. https:// dx.doi.org/10.1109/FUZZ-IEEE.2015.7337813.
  19. Hao S.R., Geng S.C., Fan L.X., Chen J.J., Zhang Q., Li L.J. Intelligent diagnosis ofjaundice with dynamic uncertain causality graph model. J. Zhejiang Univ. Sci. B. 2017; 18(5): 393-401. https://dx.doi.org/10.1631/jzus.B1600273.
  20. Zhang Y., Zhao Z. Fetal state assessment based on cardiotocography parameters using PCA and AdaBoost. In: 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), 2017: ID: 3686538. https://dx.doi.org/10.1109/CISP-BMEI.2017. 8302314.
  21. Alberola-Rubio J., Garcia-Casado J., Prats-Boluda G., Ye-Lin Y., Desantes D., Valero J., Perales A. Prediction of labor onset type: spontaneous vs induced; role of electrohysterography? Comput. Methods Programs Biomed. 2017; 144: 127 33. https://dx.doi.org/10.1016/jxmpb.2017.03.018
  22. Ferroni P., Zanzotto F., Riondino S., Scarpato N., Guadagni F., Roselli M. Breast cancer prognosis using a machine learning approach. Cancers (Basel). 2019; 11(3): 328. https://dx.doi.org/10.3390/cancers11030328.
  23. Turki T., Wang J.T.L. Clinical intelligence: New machine learning techniques for predicting clinical drug response. Comput. Biol. Med. 2019; 107: 302-22. https://dx.doi.org/10.1016/j.compbiomed.2018.12.017.
  24. Fonseca F., Peixoto H., Miranda F., Machado J., Abel ha A. Step towards prediction of perineal tear. Procedia Comput. Sci. 2017; 113: 565-70.
  25. Moreira M.W.L., Rodrigues J.J.P.C., Sangaiah A.K., Al-Muhtadi J., Korotaev V. Semantic interoperability and pattern classification for a service-oriented architecture in pregnancy care. Futur. Gener. Comput. Syst. 2018; 89: 137-47.
  26. Lam J., Noor Y.A., Supriyanto E. Ontology driven knowledge base for high risk pregnancy management. In: 2015 4th International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering (ICICI-BME). 2015: 196-201.
  27. Leinweber K.A., Columbo J.A., Kang R., Trooboff S.W., Goodney P.P. A Review of decision aids for patients considering more than one type of invasive treatment. J. Surg. Res. 2019; 235: 350-66. https://dx.doi.org/10.1016/jjss.2018.09.017.
  28. Shamoon F., Leitich H., de Bruin J.S., Rappelsberger A., Adlassnig K.P. Clinical workflow modeling in obstetrics: hepatitis B in pregnancy. Stud. Health Technol. Inform. 2017; 245: 1336.
  29. Loreto P., Fonseca F., Morais A., Peixoto H., Abelha A., Machado J. Improving maternity care with business intelligence. In: 2017 5th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW). 2017: 170-7.
  30. Georgieva A., Redman C.W.G., Papageorghiou A.T. Computerized data-driven interpretation of the intrapartum cardiotocogram: a cohort study. Acta Obstet. Gynecol. Scand. 2017; 96(7): 883-91. https://dx.doi.org/10.1111/aogs.13136.
  31. Yilmaz E. Fetal state assessment from cardiotocogram data using artificial neural networks. J. Med. Biol. Eng. 2016; 36(6): 820-32.
  32. Van Calster B., Van Huffel S., Timmerman D., Kirk E., Bourne T., Condous G. Towards a clinical decision support system for pregnancies of unknown location. In: 2008 21st IEEE International Symposium on Computer-Based Medical Systems. 2008: 581-3.
  33. Horner V., Rautenbach P., Mbananga N., Mashamba T., Kwinda H. An e-Health decision support system for improving compliance of health workers to the maternity care protocols in South Africa. Appl. Clin. Inform. 2013; 4(1): 25-36.
  34. Merriel A., Murove B.T., Merriel S.W.D., Sibanda T., Moyo S., Crofts J. Implementation of a modified obstetric early warning system to improve the quality of obstetric care in Zimbabwe. Int. J. Gynaecol. Obstet. 2017; 136(2): 175-9. https://dx.doi.org/10.1002/ijgo.12028.
  35. Bolgova K.V., Kovalchuk S.V., Balakhontceva M.A., Zvartau N.E., Metsker O.G. Human computer interaction during clinical decision support with electronic health records improvement. Int. J. E-Health Med. Commun. 2020; 11(1): 93-106.
  36. Клейменова Е.Б., Назаренко Г.И., Яшина Л.П., Пающик С.А. Проблема трансляции знаний в здравоохранении: инструменты для ее решения в области безопасности пациентов. Вестник Российской академии медицинских наук. 2018; 73(2): 105-14. [Kleymenova E.B., Nazarenko G.I., Payushchik S.A., Yashina L.P. The problem of knowledge translation in healthcare: tools for its solution in the area of patient safety. Vestnik Rossiiskoi akademii meditsinskikh nauk/Ann. Russ. Acad. Med. Sci. 2018; 73(2): 105-14. (in Russian)].
  37. Abuhay T.M., Nigatie Y.G., Metsker O.G., Kovalchuk S.V. Investigating application of change point analysis in monitoring health condition of acute coronary syndrome patients. Procedia Comput. Sci. 2018; 136: 408-15.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies