Methylation of the TLR2 and IGF2/H19 ICR genes in the placenta and blood plasma in preeclampsia


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective. To study the methylation profile of genes in the placenta and plasma of patients with preeclampsia. Materials and methods. The study included two groups of pregnant women. The main group consisted of 26 women with preeclampsia, 12 of them had moderate preeclampsia and 14 women had severe preeclampsia. The control group consisted of 26 women with normal pregnancy. The methylation level of 22 genes was determined. The study was conducted using Methylation-Sensitive High Resolution Melting curve analysis (MS-HRM). Results. The study of methylation of IGF2/H19 imprinting control region (ICR) showed a statistically significant decrease in the relative level of methylation in the placenta and blood plasma in patients with moderate and severe preeclampsia (p<0.05). There was a statistically significant increase in the level of the TLR2 gene methylation in the placenta and blood plasma in patients with severe preeclampsia in comparison with the patients with normal pregnancy (p<0.05). Conclusion. The results of the study indicate that the TLR2gene methylation and the IGF2/H19 ICR influence the development of a systemic inflammatory response in preeclampsia. The level of gene methylation in blood plasma correlates with the level of genes in the placenta and can be used as early non-invasive markers of preeclampsia.

Full Text

Restricted Access

About the authors

Daiana A. Boris

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: dayana_boris@mail.ru
postgraduate student

Aleksey N\\. Krasnyi

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: alexred@list.ru
PhD, the Head of the cytology laboratory

Sergey V. Kurevlev

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: s_kurevlev@oparina4.ru
scientific researcher of the cytology laboratory

Alsu A. Sadekova

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: a_sadekova@oparina4.ru
PhD, scientific researcher of the cytology laboratory

Natalia E. Kan

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia; European Medical Center

Email: bn-med@mail.ru
PhD, MD, head doctor

Victor L. Tyutyunnik

European Medical Center

Email: tioutiounnik@mail.ru
PhD, MD, deputy head doctor

References

  1. Pierik E., Prins J.R., van Goor H., Dekker G.A., Daha M.R., Seelen M.A.J., Scherjon S.A. Dysregulation of eomplement activation and placental dysfunction: a potential target to treat preeclampsia? Front. Immunol. 2020; 10: 3098. https://dx.doi.org/10.3389/fimmu.2019.03098.
  2. Lain K.Y., Roberts J.M. Contemporary concepts of the pathogenesis and management of preeclampsia. JAMA. 2002; 287(24): 3183-6.
  3. Myatt L., Muralimanoharan S., Maloyan A. Effect of preeclampsia on placental function: influence of sexual dimorphism, microRNA’s and mitochondria. Adv. Exp. Med. Biol. 2014; 814: 133-46. https://dx.doi.org/10.1007/978-1-4939-1031-1_12.
  4. Founds S.A., Conley Y.P., Lyons-Weiler J.F., Jeyabalan A., Hogge W.A., Conrad K.P. Altered global gene expression in first trimester placentas of women destined to develop preeclampsia. Placenta. 2009; 30(1): 15-24. https://dx.doi. org/10.1016/j.placenta.2008.09.015.
  5. Sitras V., Paulssen R.H., Grnnaas H., Leirvik J., Hanssen T.A., Vartun A., Acharya G. Differential placental gene expression in severe preeclampsia. Placenta. 2009; 30(5): 424-33. https://dx.doi.org/10.1016/j.placenta.2009.01.012.
  6. Cui Y., Wang W., Dong N., Lou J., Srinivasan D.K., Cheng W. et al. Role of corin in trophoblast invasion and uterine spiral artery remodelling in pregnancy. Nature. 2012; 484(7393): 246-50. https://dx.doi.org/10.1038/nature10897.
  7. Meng T., Chen H., Sun M., Wang H., Zhao G., Wang X. Identification of differential gene expression profiles in placentas from preeclamptic pregnancies versus normal pregnancies by DNA microarrays. OMICS. 2012; 16(6): 301-11. https://dx.doi.org/10.1089/omi.2011.0066.
  8. Sundrani D.P., Reddy U.S., Joshi A.A., Mehendale S.S., Chavan-Gautam P.M., Hardikar A.A. et al. Differential placental methylation and expression of VEGF, FLT-1 and KDR genes in human term and preterm preeclampsia. Clin. Epigenetics. 2013; 5(1): 6. https://dx.doi.org/10.1186/1868-7083-5-6.
  9. Yuen R.K., Penaherrera M.S., von Dadelszen P., McFadden D.E., Robinson W.P. DNA methylation profiling of human placentas reveals promoter hypomethylation of multiple genes in early-onset preeclampsia. Eur. J. Hum. Genet. 2010; 18(9): 1006-12. https://dx.doi.org/10.1038/ejhg.2010.63.
  10. Anton L., Brown A.G., Bartolomei M.S., Elovitz M.A. Differential methylation of genes associated with cell adhesion in preeclamptic placentas. PLoS One. 2014; 9(6): e100148. https://dx.doi.org/10.1371/journal.pone.0100148.
  11. Yeung K.R., Chiu C.L., Pidsley R., Makris A., Hennessy A., Lind J.M. DNA methylation profiles in preeclampsia and healthy control placentas. Am J. Physiol. Heart Circ. Physiol. 2016; 310(10): H1295-303. https://dx.doi. org/10.1152/ajpheart.00958.2015.
  12. Красный А.М., Садекова А.А., Волгина Н.Е., Машаева Р.И., Кометова В.В., Хабас Г.Н., Голицына Ю.С., Носова Ю.В., Оводенко Д.Л. Исследование уровня метилирования гена RASSF1 в плазме и опухоли при раке эндометрия. Бюллетень экспериментальной биологии и медицины. 2019; 167(2): 223-7.
  13. Zarate A., Saucedo R., Valencia J., Manuel L., Hernandez M. Early disturbed placental ischemia and hypoxia creates immune alteration and vascular disorder causing preeclampsia. Arch. Med. Res. 2014; 45(7): 519-24. https://dx.doi. org/10.1016/j.arcmed.2014.10.003.
  14. Burrows T.D., King A., Loke Y.W. Expression of adhesion molecules by endovascular trophoblast and decidual endothelial cells: implications for vascular invasion during implantation. Placenta. 1994; 15(1): 21-33.
  15. Хачатрян З.В., Кан Н.Е., Красный А.М., Садекова А.А., Куревлев С.В., Тютюнник В.Л. Метилирование генов в плаценте при задержке роста плода. Акушерство и гинекология. 2019; 12: 52-6.
  16. Koukoura O., Sifakis S., Soufla G., Zaravinos A., Apostolidou S., Jones A. et al. Loss of imprinting and aberrant methylation of IGF2 in placentas from pregnancies complicated with fetal growth restriction. Int. J. Mol. Med. 2011; 28(4): 481-7. https://dx.doi.org/10.3892/ijmm.2011.754.
  17. Yu L., Chen M., Zhao D., Yi P., Lu L., Han J. et al. The H19 gene imprinting in normal pregnancy and pre-eclampsia. Placenta. 2009; 30(5): 443-7. https:// dx.doi.org/10.1016/j.placenta.2009.02.011.
  18. Li X., Wang H., Yao B., Xu W., Chen J., Zhou X. lncRNA H19/miR-675 axis regulates cardiomyocyte apoptosis by targeting VDAC1 in diabetic cardiomyopathy. Sci. Rep. 2016; 6: 36340. https://dx.doi.org/10.1038/ srep36340.
  19. Борис Д.А., Волгина Н.Е., Красный А.М., Тютюнник В.Л., Кан Н.Е. Прогнозирование преэклампсии по содержанию CD16-негагивных моноцитов. Акушерство и гинекология. 2019. 7. 49-55. [Boris D.A., Volgina N.E., Krasnyi A.M., Tyutyunnik V.L., Kan N.E. Prediction of preeclampsia on the couts of cd-16 negative monocytes. Akusherstvo i ginekologiya / Obstetrics and Gynecology. 2019; 7: 49-55. (in Russian)]. https://dx.doi.org/10.18565/ aig.2019.7.49-55.
  20. Красный А.М., Грачева М.И., Садекова А.А., Вторушина В.В., Балашов И.С., Кан Н.Е., Боровиков П.И., Кречетова Л.В., Тютюнник В.Л. Комбинированное исследование общей, фетальной ДНК, цитокинов в плазме крови матери при преэклампсии. Бюллетень экспериментальной биологии и медицины. 2017; 164(12): 686-91. https:// dx.doi.org/10.1007/s10517-018-4066-1.
  21. Сухих Г.Т., Красный А.М., Кан Н.Е., Майорова Т.Д., Тютюнник В.Л., Ховхаева П.А., Сергунина О.А., Тютюнник Н.В., Грачева М.И., Вавина О.В., Озернюк Н.Д., Борис Д.А. Апоптоз и экспрессия ферментов антиоксидантной защиты в плаценте при преэклампсии. Акушерство и гинекология. 2015; 3: 11-5.
  22. Arechavaleta-Velasco F., Ma Y., Zhang J., McGrath C.M., Parry S. Adeno-associated virus-2 (AAV-2) causes trophoblast dysfunction, and placental AAV-2 infection is associated with preeclampsia. Am. J. Pathol. 2006; 168(6): 1951-9.
  23. Xie F, Hu Y, Speert D.P., Turvey S.E., Peng G., Money D.M. et al.; Toxaemia Study Group. Toll-like receptor gene polymorphisms and preeclampsia risk: a case-control study and data synthesis. Hypertens. Pregnancy. 2010; 29(4): 390-8. https://dx.doi.org/10.3109/10641950903242659.
  24. Wujcicka W., Paradowska E., Studziriska М., Wilczynski J., Nowakowska D. TLR2 2258 G>A single nucleotide polymorphism and the risk of congenital infection with human cytomegalovirus. Virol. J. 2017; 14(1): 12. https://dx.doi. org/10.1186/sl2985-016-0679-z.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies