Lipid markers of metastatic lesions in regional lymph nodes in patients with breast cancer


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Aim. To assess the possibility of diagnosis of lymph node metastasis of breast cancer by lipid profile in normal and malignant breast tissue. Materials and methods. Semiquantitative evaluation of the lipids in tissue was performed using HPLC-MS/MS of tissue organic extracts. The lipids were identified by accurate molecular masses and tandem mass-spectra (MS/ MS). To create the logistic regression based on the Akaike information criteria, the lipids with significantly lipid level difference were used (p<0.05by Mann-Witney U-test). Results. The obtained diagnostic models based on normal tissue had sensitivity 81% and specificity 79%, the diagnostic model based on malignant tissue had sensitivity 78% and specif icity 81 % respectively. The lipids, which were selected as markers of lymph node metastases, belonged to sphingomyelins, ether lipids, phosphatidylcholines and phosphotidylethanoamines. Conclusion. The study confirmed that ether lipids and sphingomyelins may be the indicators of metastasis and demonstrated the possibility to use them for metastasis diagnosis.

Full Text

Restricted Access

About the authors

Alisa O. Tokareva

National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Health of the Russian Federation; V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Center of Chemical Physics; Moscow Institute of Physics and Technology

Email: alisa.tokareva@phystech.edu
specialist of the Laboratory of Proteomics and Metobolomics of the Human Reproduction

Vitaliy V. Chagovets

National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Health of the Russian Federation

Email: vvchagovets@gmail.ru
Ph.D. in Physical and Mathematical Sciences, Senior researcher of the Laboratory of Proteomics and Metobolomics of the Human Reproduction

Valeriy V. Rodionov

National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Health of the Russian Federation

Email: V_Rodionov@oparina4.ru
M.D., Head of the Department of Breast Pathology

Vlada V. Kometova

National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Health of the Russian Federation

Email: v_kometova@oparina4.ru
PhD in Medical Sciences, Senior researcher of the Anatomical Pathology Department

Maria V. Rodionova

National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Health of the Russian Federation

Email: m_Rodionova@oparina4.ru
PhD in Medical Sciences, Oncologist of the Department of Breast Pathology

Natalia L. Starodubtseva

National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Health of the Russian Federation; V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Center of Chemical Physics

Email: aurum19@mail.ru
PhD in Biological Sciences, Head of the Laboratory of Proteomics and Metobolomics of the Human Reproduction

Vladimir E. Frankevich

National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Health of the Russian Federation

Email: v_frankevich@oparina4.ru
Ph.D. in Physical and Mathematical Sciences, Systems Biology in Reproduction

References

  1. Каприн А.Д., Старинский В.В., Петрова Г.В., ред. Злокачественные новообразования в России в 2017 году (заболеваемость и смертность). М.: МНИОИ им. П.А. Герцена - филиал ФГБУ «НМИРЦ» Минздрава России; 2018.
  2. Lucci A., McCall L.M., Beitsch P.D., Whitworth P.W., Reintgen D.S., Blumencranz P.W. et al. Surgical complications associated with sentinel lymph node dissection (SLND) plus axillary lymph node dissection compared with SLND alone in the American College of Surgeons Oncology Group trial Zoo11. J. Clin. Oncol. 2007; 25(24): 3657-63. https://dx.doi.org/10.1200/JCO.2006.07.4062.
  3. Sukhikh G.T, Sencha A.N., eds. Multiparametric ultrasound diagnosis of breast diseases. Springer; 2018.
  4. Zhou M., Lu B., Lv G., Tang Q., Zhu J., Li J., Shi K. Differential diagnosis between metastatic and non-metastatic lymph nodes using DW-MRI: a metaanalysis of diagnostic accuracy studies. J. Cancer Res. Clin. Oncol. 2015; 141(6): 1119-30. 10.1007/s00432-014-1895-9.
  5. Ulaner G.A. PET/CT for patients with breast cancer: Where is the clinical impact? Am. J. Roentgenol. 2019; 213(2): 254-65. https://dx.doi.org/10.2214/ AJR.19.21177.
  6. Voogd A.C., Coebergh J.W.W., Repelaer van Driel O.J., Roumen R.M.H., van Beek M.W.P.M., Vreugdenhil A., Crommelin M.A. The risk of nodal metastases in breast cancer patients with clinically negative lymph nodes: A population-based analysis. Breast Cancer Res. Treat. 2000; 62(1): 63-9. https://dx.doi. org/10.1023/a:1006447825160.
  7. Viale G., Zurrida S., Maiorano E., Mazzarol G., Pruneri G., Paganelli G. et al. Predicting the status of axillary sentinel lymph nodes in 4351 patients with invasive breast carcinoma treated in a single institution. Cancer. 2005; 103(3): 492-500. https://dx.doi.org/10.1002/cncr.20809.
  8. Bandu R., Mok H.J., Kim K.P. Phospholipids as cancer biomarkers: mass spectrometry-based analysis. Mass Spectrom. Rev. 2018; 37(2):107-38. https:// dx.doi.org/10.1002/mas.21510.
  9. Adamyan L., Starodubtseva N., Borisova A., Stepanian A., Chagovets V., Salimova D. et al. Direct mass spectrometry differentiation of ectopic and eutopic endometrium in patients with endometriosis. J. Minim. Invasive Gynecol. 2018; 25(3): 426-33. https://dx.doi.org/10.1016/j.jmig.2017.08.658.
  10. Han X. Lipidomics for studying metabolism. Nat. Rev. Endocrinol. 2016; 12(11): 668-79. https://dx.doi.org/10.1038/nrendo.2016.98.
  11. Chagovets V.V., Wang Z., Kononikhin A.S., Starodubtseva N.L., Borisova A., Salimova D., Popov I.A., Kozachenko A.V., Chingin K., Chen H., Frankevich V.E., Adamyan L.V., Sukhikh G.T. Endometriosis foci differentiation by rapid lipid profiling using tissue spray ionization and high resolution mass spectrometry. Sci. Rep. 2017; 7(1): 2546. https://dx.doi.org/10.1038/s41598-017-02708-x.
  12. Tokareva A.O., Chagovets V.V., Starodubtseva N.L., Nazarova N.M., Nekrasova M.E., Kononikhin A.S., Frankevich V.E., NikolaevE.N., Sukhikh G.T. Feature selection for OPLS discriminant analysis of cancer tissue lipidomics data. J. Mass Spectrom. 2020; 55(1): e4457. https://dx.doi.org/10.1002/jms.4457.
  13. Sukhikh G., Chagovets V., Wang X., Rodionov V., Kometova V., Tokareva A., Kononikhin A., Starodubtseva N., Chingin K., Chen H., Frankevich V. Combination of low-temperature electrosurgical unit and extractive electrospray ionization mass spectrometry for molecular profiling and classification of tissues. Molecules. 2019; 24(16): 2957. https://dx.doi.org/10.3390/ molecules24162957.
  14. Chagovets V., Wang Z., Kononikhin A., Starodubtseva N., Borisova A., Salimova D., Popov I., Kozachenko A., Chingin K., Chen H., Frankevich V., Adamyan L., Sukhikh G. A comparison of tissue spray and lipid extract direct injection electrospray ionization mass spectrometry for the differentiation of eutopic and ectopic endometrial tissues. J. Am. Soc. Mass Spectrom. 2017; 29(2): 323-30. https://dx.doi.org/10.1007/s13361-017-1792-y.
  15. Koelmel J.P., Kroeger N.M., Ulmer C.Z., Bowden J.A., Patterson R.E., Cochran J.A. et al. Lipid match: An automated workflow for rule-based lipid identification using untargeted high-resolution tandem mass spectrometry data. BMC Bioinformatics. 2017; 18(1): 331. https://dx.doi.org/10.1186/s12859-017-1744-3.
  16. Sud M., Fahy E., Cotter D., Brown A., Dennis E.A., Glass C.K. et al. LMSD: LIPID MAPS structure database. Nucleic Acids Res. 2007; 35 (Database issue): D527-32. https://dx.doi.org/10.1093/nar/gkl838.
  17. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria; 2018.
  18. R team R Studio: Integrated Development for R. 2016.
  19. Akaike H. Information theory and an extension of the maximum likelihood principle. Selected Papers of Hirotugu Akaike. Springer; 1998: 199-213.
  20. Shamseddine A.A., Airola M.V., Hannun Y.A. Roles and regulation of neutral sphingomyelinase-2 in cellular and pathological processes. Adv. Biol. Regul. 2015; 57: 24-41. https://dx.doi.org/10.1016/j.jbior.2014.10.002.
  21. Revill K., Wang T, Lachenmayer A., Kojima K., Harrington A., Li J. et al. Genome-wide methylation analysis and epigenetic unmasking identify tumor suppressor genes in hepatocellular carcinoma. Gastroenterology. 2013; 145 (6): 1424-35. e1-25. https://dx.doi.org/10.1053/j.gastro.2013.08.055.
  22. Carpinteiro A., Becker K.A., Japtok L., Hessler G., Keitsch S., Pozgajova M. et al. Regulation of hematogenous tumor metastasis by acid sphingomyelinase. EMBO Mol. Med. 2015; 7(6): 714-34. https://dx.doi.org/10.15252/emmm.201404571.
  23. Roy J., Dibaeinia P., Fan T.M., Sinha S., Das A. Global analysis of osteosarcoma lipidomes reveal altered lipid profiles in metastatic versus nonmetastatic cells. J. Lipid Res. 2019; 60(2): 375-87. https://dx.doi.org/10.1194/jlr.M088559.
  24. Peng W Tan S., Xu Y., Wang L., Qiu D., Cheng C. et al. LC-MS/MS metabolome analysis detects the changes in the lipid metabolic profiles of dMMR and pMMR cells. Oncol. Rep. 2018; 40(2): 1026-34. https:// dx.doi.org/10.3892/or.2018.6510.
  25. Smith R.E., Lespi P., Di Luca M., Bustos C., Marra FA., De Alaniz M.J.T., Marra C.A. A reliable biomarker derived from plasmalogens to evaluate malignancy and metastatic capacity of human cancers. Lipids. 2008; 43(1): 79-89. https://dx.doi.org/10.1007/s11745-007-3133-6.
  26. Fallani A., Mannori G., Ruggieri S. Composition of ether-inked sub-classes of glycerophospholipids in clones with a different metastatic potential isolated from a murine fibrosarcoma line (T3 cells). Int. J. Cancer. 1995; 62(2): 230-2. https://dx.doi.org/10.1002/ijc.2910620220.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies