Placental lesions in pregnant women with SARS-CoV-2 infection


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The paper analyzes the data available in the literature on placental lesions in pregnant women with SARS-CoV-2 infection. The placenta is noted to be a potential target organ for SARS-CoV-2 due to that it has coronavirus receptors: angiotensin-converting enzyme-2, transmembrane serine protease 2 (TMPRSS2), and CD147. An immunohistochemical study and in situ hybridization showed the presence of SARS-CoV-2 proteins in the syncytiotrophoblast, vascular endothelium, and villous stromal macrophages. The data available in the literature on main placental lesions are summarized. The placenta most often exhibited vascular disorders, such as decidual vasculopathy, accelerated villous maturation and distal villous hypoplasia, as well as perivascular fibrin deposits, intervillous thrombi, and villous infarcts. The development of fetal thrombotic vasculopathy and avascular villi is also described. There are quite frequently occurring inflammatory placental changes as chorioamnionitis and villitis of unknown etiology. Differences in the degree of placental lesion were noted in pregnant women with clinical manifestations of COVID and in those with an asymptomatic course. Villous infarcts and villous chorangiosis, perivascular fibrinoid deposits, and blood clots in the intervillous space were more common in the symptomatic course of the disease; distal villous hypoplasia, fetal vascular disorders, chorioamnionitis, and villitis were in the asymptomatic course. It is emphasized that placental lesions in SARS- CoV-2 infection can cause pregnancy, fetal, and maternal complications. At the same time, an indication is given to the ambiguity of the literature data on transplacental (vertical) transmission of infection from mother to fetus.

Full Text

Restricted Access

About the authors

Aleksandr I. Shchegolev

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: ashegolev@oparina4.ru
Dr. Med. Sci., professor, Head of 2-nd Morbid Anatomy

Ulyana N. Tumanova

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: patan777@gmail.com
Ph.D., senior researcher of Department of 2-nd Morbid Anatomy

Vladimir N. Serov

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: v_serov@oparina4.ru
MD, professor, academician of the Russian Academy of Sciences, chief researcher

References

  1. Zhu N., Zhang D., Wang W., Li X., Yang B., Song J. et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020; 382(8): 727-33. https://dx.doi.org/10.1056/NEJMoa2001017.
  2. Coronavirus Disease (COVID-19) Pandemic. Available at: https://www.who. int/emergencies/diseases/novel-coronavirus-2019.
  3. Постановление Правительства РФ от 31 января 2020 г. № 66 «О внесении изменения в перечень заболеваний, представляющих опасность для окружающих». [Decree of the government of the Russian Federation No. 66 of January 31, 2020 "On amendments to the list of diseases that pose a danger to others". (in Russian)]. https://base.garant.ru/73492109/.
  4. Беляков А.Н., Рассохин В.В., Ястребова Е.Б. Коронавирусная инфекция COVID-19. Природа вируса, патогенез, клинические проявления. Сообщение 1. ВИЧ-инфекция и иммуносупрессии. 2020; 1: 7-21.
  5. Pascarella G, Strumia A., Piliego C., Bruno F., Del Buono R., Costa F. et al. COVID-19 diagnosis and management: a comprehensive review. J. Intern. Med. 2020; 288(2): 192-206. https://dx.doi.org/10.1111/joim.13091.
  6. Wu Z., McGoogan J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese center for disease control and prevention. JAMA. 2020; 323(13): 1239-42. https://dx.doi.org/10.1001/jama.2020.2648.
  7. Yu N., Li W., Kang Q., Xiong Z., Wang S., Lin X. et al. Clinical features and obstetric and neonatal outcomes of pregnant patients with COVID-19 in Wuhan, China: a retrospective, single-centre, descriptive study. Lancet Infect. Dis. 2020; 20(5): 559-64. https://dx.doi.org/10.1016/S1473-3099(20)30176-6.
  8. Припутневич Т.В., Гордеев А.Б., Любасовская Л.А., Шабанова Н.Е. Новый коронавирус SARS-COV-2 и беременность: обзор литературы. Акушерство и гинекология. 2020; 5: 6-12. https://dx.doi.org/10.18565/aig.2020.5.6-12. [Priputnevich T.V., Gordeev A.B., Lyubasovskaya L.A., Shabanova N.E. The novel coronavirus SARS-CoV-2 and pregnancy: literature review. Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2020; 5: 6-12. (in Russian)]. https:// dx.doi.org/10.18565/aig.2020.5.6-12.
  9. Wang Q., Zhang Y., Wu L., Niu S., Song C., Zhang Z. et al. Structural and functional basis of SARSCoV-2 entry by using human ACE2. Cell. 2020; 181(4): 894-904. e9. https://dx.doi.org/10.1016/j.cell.2020.03.045.
  10. Di Mascio D., Khalil A., Saccone G., Rizzo G., Buca D., Liberati M. et al. Outcome of coronavirus spectrum infections (SARS, MERS, COVID-19) during pregnancy: a systematic review and meta-analysis. Am. J. Obstet. Gynecol. MFM. 2020; 2(2): 100107. https://dx.doi.org/10.1016/j.ajogmf.2020.100107.
  11. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020; 5(4): 536-44. https://dx.doi.org/10.1038/s41564-020-0695-z.
  12. Li W., Shi Z, Yu M., Ren W., Smith C., Epstein J.H. et al. Bats are natural reservoirs of SARS-like. Science. 2005; 310(5748): 676-9. https://dx.doi.org/10.1126/ science.1118391.
  13. Kupferschmidt K. Emerging diseases. Researchers scramble to understand camel connection toi MERS. Science. 2013; 341(6147): 702. https://dx.doi. org/10.1126/science.341.6147.702.
  14. Hoffmann M., Kleine-Weber H., Schroeder S., Kruger N., Herrler T., Erichsen S. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020; 181(2): 271-80. e8. https://dx.doi. org/10.1016/j.cell.2020.02.052.
  15. Hamming I., Timens W., Bulthuis M.L.C., Lely A.T., Navis G.J., van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 2004; 203(2): 631-7. https://dx.doi.org/10.1002/path.1570.
  16. Wang K., Chen W Zhou Y.S., Lian J.Q., Zhang Z., Du P. et al. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein. bioRxiv. March 31 2020. Preprint. https://dx.doi.org/10.1101/2020.03.14.988345.
  17. Ashary N., Bhide A., Chakraborty P., Colaco S., Mishra A., Chhabria K. et al. Single-Cell RNA-seq identifies cell subsets in human placenta that highly expresses factors driving pathogenesis of SARS-CoV-2. Front. Cell Dev. Biol. 2020; 8: 783. https://dx.doi.org/10.3389/ fcell.2020.00783.
  18. Constantino F.B., Cury S.S., Nogueira C.R., Carvalho R.F., Justulin L.A. Prediction of non-canonical routes for SARS-CoV-2 infection in human placenta cells. bioRxiv. June 12 2020. https://dx.doi.org/10.1101/2020.06.12.148411.
  19. Li M., Chen L., Zhang J., Xiong C., Li X. The SARS-CoV-2 receptor ACE2 expression of maternal-fetal interface and fetal organs by single-cell transcriptome study. PLoS One. 2020; 15(4): e0230295. https://dx.doi.org/10.1371/journal. pone.0230295.
  20. Pique-Regi R., Romero R., Tarca A.L., Luca F., Xu Y., Alazizi A. et al. Does the human placenta express the canonical cell entry mediators for SARSCoV-2? Elife. 2020 July 14; 9: e58716. https://dx.doi.org/10.7554/ eLife.58716.
  21. Pringle K.G., Tadros M.A., Callister R.J., Lumbers E.R. The expression and localization of the human placental prorenin/renin-angiotensin system throughout pregnancy: roles in trophoblast invasion and angiogenesis? Placenta. 2011; 32(12): 956-62. https://dx.doi.org/10.1016/j.placenta.2011.09.020.
  22. Sungnak W., Huang N., Becavin C., Berg M., Queen R., Litvinukova M. et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat. Med. 2020; 26(5): 681-7. https://dx.doi. org/10.1038/s41591-020-0868-6.
  23. Valdes G., Neves L.A., Anton L., Corthorn J., Chacon C., Germain A.M. et al. Distribution of angiotensin-(1-7) and ACE2 in human placentas of normal and pathological pregnancies. Placenta. 2006; 27(2-3): 200-7. https://dx.doi. org/10.1016/j.placenta.2005.02.015.
  24. Zheng Q.L., Duan T., Jin L. Single-cell RNA expression profiling of ACE2 and AXL in the human maternal-fetal interface. Reprod. Dev. Med. 2020; 4(1): 7-10. https://dx.doi.org/10.4103/2096-2924.278679.
  25. Hecht J.L., Quade B., Deshpande V., Mino-Kenudson M., Ting D.T., Desai N. et al. SARS-CoV-2 can infect the placenta and is not associated with specific placental histopathology: a series of 19 placentas from COVID-19-positive mothers. Mod. Pathol. 2020; 33(11): 2092-103. https://dx.doi.org/10.1038/s41379-020-0639-4.
  26. Bloise E., Zhang J., Nakpu J., Hamada H., Dunk C.E., Li S. et al. Expression of severe acute respiratory syndrome coronavirus 2 cell entry genes, angiotensin-converting enzyme 2 and transmembrane protease serine 2, in the placenta across gestation and at the maternal-fetal interface in pregnancies complicated by preterm birth or preeclampsia. Am. J. Obstet. Gynecol. August 25 2020; S0002-9378(20)30884-X. https://dx.doi.org/10.1016/j.ajog.2020.08.055.
  27. Vivanti A.J., Vauloup-Fellous C., Prevot S., Zupan V., Suffee C., Cao J.D. et al. Transplacental transmission of SARS-CoV-2 infection. Nat. Commun. 2020; 11(1): 3572. https://dx.doi.org/10.1038/s41467-020-17436-6.
  28. Hsu A.L., Guan M., Johannesen E., Stephens A.J., Khaleel N., Kagan N. et al. Placental SARS-CoV-2 in a pregnant woman with mild COVID-19 disease. J. Med. Virol. August 25 2020. https://dx.doi.org/10.1002/jmv.26386.
  29. Facchetti F., Bugatti M., Drera E., Tripodo C., Sartori E., Cancila V. et al. SARS-CoV2 vertical transmission with adverse effects on the newborn revealed through integrated immunohistochemical, electron microscopy and molecular analyses of placenta. EBioMedicine. 2020; 59: 102951. https://dx.doi.org/10.1016/j. ebiom.2020.102951.
  30. Щеголев А.И., Туманова У.Н., Ляпин В.М., Серов В.Н. Синцитиотрофобласт ворсин плаценты в норме и при преэклампсии. Акушерство и гинекология. 2020; 6: 21-8. [Shchegolev A.I., Tumanova U.S., Lyapin V.M., Serov V.N. The syncytiotrophoblast of the placental villi in health and in preeclampsia. Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2020; 6: 21-8. (in Russian)]. https://dx.doi.org/10.18565/aig.2020.6.21-28.
  31. Delorme-Axford E., Donker R.B., Mouillet J.F., Chu T., Bayer A., Ouyang Y. et al. Human placental trophoblasts confer viral resistance to recipient cells. Proc. Natl. Acad. Sci. USA. 2013; 110(29): 12048-53. https://dx.doi.org/10.1073/ pnas.1304718110.
  32. Baergen R.N., Heller D.S. Placental pathology in Covid-19 positive mothers: preliminary findings. Pediatr. Dev. Pathol. 2020; 23(3): 177-80. https://dx.doi. org/10.1177/1093526620925569.
  33. Gulersen M., Prasannan L., Tam H.T., Metz C.N., Rochelson B., Meirowitz N. et al. Histopathologic evaluation of placentas after diagnosis of maternal severe acute respiratory syndrome coronavirus 2 infection. Am. J. Obstet. Gynecol. MFM. 2020; 2(4): 100211. https://dx.doi.org/10.1016/j.ajogmf.2020.100211.
  34. Shanes E.D., Mithal L.B., Otero S., Azad H.A., Miller E.S., Goldstein J.A. Placental pathology in COVID-19. Am. J. Clin. Pathol. 2020; 154(1): 23-32. https://dx.doi.org/10.1093/ajcp/aqaa089.
  35. Smithgall M.C., Liu-Jarin X., Hamele-Bena D., Cimic A., Mourad M., Debelenko L. et al. Thierd trimester placentas of SARS-CoV-2-positive women: histomorphology, including viral Immunohistochemistry and in situ hybridization. Histopathology. 2020; 77(6): 994-9. https://dx.doi.org/10.1111/ HIS.14215.
  36. Taglauer E., Benarroch Y., Rop K., Barnett E., Sabharwal V., Yarrington C. et al. Consistent localization of SARS-CoV-2 spike glycoprotein and ACE2 over TMPRSS2 predominance in placental villi of 15 COVID-19 positive maternal-fetal dyads. Placenta. 2020; 100: 69-74. https://dx.doi.org/10.1016/j. placenta.2020.08.015.
  37. Redline R.W. Classification of placental lesions. Am. J. Obstet. Gynecol. 2015; 213(4, Suppl.): S21-8. https://dx.doi.org/10.1016/j.ajog.2015.05.056.
  38. Щеголев А.И. Современная морфологическая классификация повреждений плаценты. Акушерство и гинекология. 2016; 4: 16-23. [Shchegolev A.I. Current morphological classification of damages to the placenta. Akusherstvo i ginekologiya/Obstetrics and gynecology. 2016; 4: 16-23. (in Russian)]. https:// dx.doi.org/10.18565/aig.2016.4.16-23.
  39. Щеголев А.И., Серов В.Н. Клиническая значимость поражений плаценты. Акушерство и гинекология. 2019; 3: 54-62. [Shchegolev A.I., Serov V.N. Clinical significance of placental lesions. Akusherstvo i ginekologiya/Obstetrics and gynecology. 2019; 3: 54-62. (in Russian)]. https://dx.doi.org/10.18565/ aig.2019.3.54-62.
  40. Roberts D.J., Post M.D. The placenta in pre-eclampsia and intrauterine growth restriction. J. Clin. Pathol. 2008; 61(12): 1254-60. https://dx.doi.org/10.1136/ jcp.2008.055236.
  41. Arias F., Victorio A., Cho K., Kraus F. Placental histology and clinical characteristics of patients with preterm premature rupture of membranes. Obstet. Gynecol. 1997; 89(2): 265-71. https://dx.doi.org/10.1016/S0029-7844(96)00451-6.
  42. Щеголев А.И., Дубова Е.А., Павлов К.А. Морфология плаценты. М.; 2010. 46 с. [Shchegolev A.I., Dubova E.A., Pavlov K.A. The morphology of the placenta. M.; 2020. 46 p. (in Russian)].
  43. Stanek J. Histological features of shallow placental implantation unify early-onset and late-onset preeclampsia. Pediatr. Dev. Pathol. 2019; 22(2): 112-22. https://dx.doi.org/10.1177/1093526618803759.
  44. Щеголев А.И, Ляпин В.М., Туманова У.Н., Воднева Д.Н., Шмаков Р.Г. Гистологические изменения плаценты и васкуляризация ее ворсин при ранней и поздней преэклампсии. Архив патологии. 2016; 78(1): 13-8. [Shchegolev A.I., Lyapin V.M., Tumanova U.N., Vodneva D.N., Shmakov R.G. Histological hanges in the placenta and vascularization of its villi in early- and late-onset preeclampsia. Archives of pathology. 2016; 78(1): 13-8. (in Russian)]. https://dx.doi.org/10.17116/ patol201678113-18.
  45. Ляпин В.М., Туманова У.Н., Щеголев А.И. Синцитиальные узелки в ворсинах плаценты при преэклампсии. Современные проблемы науки и образования. 2015; 4: 499. [Lyapin V.M., Tumanova U.N., Schegolev A.I. Syncytial knots of placental villi at preeclampsia. Sovremennye problemy nauki i obrazovaniya. 2015; 4: 499. (in Russian)].
  46. Di Renzo G.C., Giardina I. Coronavirus disease 2019 in pregnancy: consider thromboembolic disorders and thromboprophylaxis. Am. J. Obstet. Gynecol. 2020; 223(1): 135. https://dx.doi.org/10.1016/j.ajog.2020.04.017.
  47. Mongula I.E., Frenken M.W.E, van Lijnschoten G, Arents N.L.A., de Wit-Zuurendonk L.D., Schimmel-de Kok A.P.A. et al. COVID-19 during pregnancy: non-reassuring fetal heart rate, placental pathology and coagulopathy. Ultrasound Obstet. Gynecol. 2020; 56(5): 773-6. https://dx.doi.org/10.1002/ uog.22189.
  48. Stahl K, Brdsen J.H, Hoeper M.M., David S. Direct evidence of SARS-CoV-2 in gut endothelium. Intensive Care Med. 2020; 46(11): 2081-2. https://dx.doi. org/10.1007/s00134-020-06237-6.
  49. Soma H, Watanabe Y, Hata T. Chorangiosis and chorangioma in three cohorts of placentas from Nepal, Tibet, and Japan. Reprod. Fertil. Dev. 1995; 7(6): 1533-8. https://dx.doi.org/10.1071/rd9951533.
  50. Shchyogolev A.I., Dubova E.A, Pavlov K.A., Lyapin V.M., Kulikova G.V, Shmakov R.G. Morphometric characteristics of terminal villi of the placenta in pre-eclampsia. Bull. Exp. Biol. Med. 2012; 154(1): 92-5. https://dx.doi. org/10.1007/sl0517-012-1883-5.
  51. Воднева Д.Н., Романова В.В, Дубова Е.А, Павлов К.А., Шмаков Р.Г., Щеголев А.И. Клинико-морфологические особенности ранней и поздней преэклампсии. Акушерство и гинекология. 2014; 2: 35-40. [Vodneva D.N., Romanova V.V., Dubova Е.А., Pavlov K.A., Shmakov R.G., Shchegolev A.I. Clinical and morphological features of early and late preeclampsia. Akusherstvo i ginekologiya/Obstetrics and gynecology. 2014; 2: 35-40. (in Russian)].
  52. Altshuler G, Russell P. The human placental villitides: a review of chronic intrauterine infection. Curr. Top. Pathol. 1975; 60: 63-112.
  53. Ozer E, Cagliyan E, Yuzuguldu R.I., Cevizci M.C., Duman N. Villitis of unknown etiology in the placenta of a pregnancy complicated by COVID-19. Turk. Patoloji Derg. September 8 2020. https://dx.doi.org/10.5146/tjpath.2020.01506.
  54. Lv Y, Gu B, Chen Y, Ни S., Ruan T, Xu G. et al. No intrauterine vertical transmission in pregnancy with COVID-19: A case report. J. Infect. Chemother. 2020; 26(12): 1313-5. https://dx.doi.Org/10.1016/j.jiac.2020.07.015.
  55. Zeng L, Xia S., Yuan W, Yan K, Xiao F, Shao I. et al. Neonatal early-onset infection with SARS-CoV-2 in 33 neonates born to mothers with COVID-19 in Wuhan, China. JAMA Pediatr. 2020; 174(7): 722-5. https://dx.doi.org/ 10.1001/jamapediatrics.2020.0878.
  56. Zeng H, Xu C, Fan J, Tang Y, Deng 0., Zhang W. et al. Antibodies in infants born to mothers with COVID-19 pneumonia. JAMA. 2020; 323(18): 1848-9. https://dx.doi.org/10.1001/jama.2020.4861.
  57. Patane L, Morotti D, Giunta M.R., Sigismondi C, Piccoli M.G., Frigerio L. et al. Vertical transmission of COVID-19: SARS-CoV-2 RNA on the fetal side of the placenta in pregnancies with COVID-19 positive mothers and neonates at birth. Am. J. Obstet. Gynecol. MFM. 2020; 2(3): 100145. https://dx.doi. org/10.1016/j.ajogmf.2020.100145.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies