MICROBIOTA OF PRETERM INFANTS BORN TO MOTHERS WITH ENDOCRINE DISORDERS


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Aim. The study aimed to investigate differences in the microbiota composition of newborn infants from mothers with and without endocrine disorders. Materials and methods. We collected 143 stool samples from preterm infants born to mothers with or without endocrine disorders. Samples were taken from the first stool passed by the newborn (meconium) one week and two weeks after birth. DNA isolated from the samples underwent sequencing of the V3-V4 region of the 16S rRNA gene. Taxonomic profiles were assessed using the DADA2. The search for differentially represented bacterial genera was carried out using the DESeq2 package. Results. Newborn infants from mothers with and without endocrine disorders had a significantly different composition of the gut microbiota. Differences started to emerge one week after birth. Infants from mothers with endocrine disorders had increased relative abundance of opportunistic microorganisms and reduced relative abundance of genera Bifidobacterium and Lactobacillus. Conclusion. Our findings of differences in preterm infant gut microbiota composition suggest that the maternal endocrine system’s state can influence the infant gut microbiome’s formation during the early stages of its colonization.

Full Text

Restricted Access

About the authors

Tatiana V. Priputnevich

V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: priput1@gmail.com
Dr. Med. Sci., Director of the Institute of Microbiology, Antimicrobial Therapy and Epidemiology 4, Oparin str., Moscow, 117997, Russia

Anastasia V. Nikolaeva

V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: a_nikolaeva@oparina4.ru
Ph.D., Chief physician 4, Oparin str., Moscow, 117997, Russia

Natalia E. Shabanova

V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: n_shabanova@oparina4.ru
Ph.D., Associate Professor, Researcher at the Unit of Clinical Pharmacology, Institute of microbiology, Antimicrobial Therapy and Epidemiology 4, Oparin str., Moscow, 117997, Russia

Dmitry E. Fedorov

Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency

Email: fedorov.de@gmail.com
Research Laboratory Assistant at the Laboratory of Genome Research and Computational Biology 1A Malaya Pirogovskaya str., Moscow, 119435, Russia

Alexander I. Manolov

Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency

Email: paraslonic@gmail.com
Researcher at the Laboratory of Genome Research and Computational Biology 1A Malaya Pirogovskaya str., Moscow, 119435, Russia

Alexander V. Pavlenko

Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency

Email: pavav@mail.ru
Researcher at the Laboratory of Genome Research and Computational Biology 1A Malaya Pirogovskaya str., Moscow, 119435, Russia

Dmitry N. Konanov

Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency

Email: konanovdmitriy@gmail.com
Laboratory Research at the Laboratory of Genome Research and Computational Biology 1A Malaya Pirogovskaya str., Moscow, 119435, Russia

Danil V. Krivonos

Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency

Email: danil01060106@gmail.com
Student at the Laboratory of Genome Research and Computational Biology 1A Malaya Pirogovskaya str., Moscow, 119435, Russia

Ksenia M. Klimina

Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency

Email: ppp843@yandex.ru
Senior Researcher at the Laboratory of Genome Research and Computational Biology 1A Malaya Pirogovskaya str., Moscow, 119435, Russia

Vladimir A. Veselovskiy

Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency

Email: djdf26@gmail.com
Junior Researcher at the Laboratory of Genome Research and Computational Biology 1A Malaya Pirogovskaya str., Moscow, 119435, Russia

Viktor V. Zubkov

V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: victor.zubkov@mail.ru
Dr. Med. Sci., Professor, Director of the Institute of Neonatology and Pediatrics 4, Oparin str., Moscow, 117997, Russia

Elena N. Il’ina

Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency

Email: ilinaen@gmail.com
Corr. Member of the RAS, Dr. Bio. Sci., Deputy Director for Science, Head of the Department of Molecular Biology and Genetics 1A Malaya Pirogovskaya str., Moscow, 119435, Russia

References

  1. Tanaka M, Nakayama J. Development of the gut microbiota in infancy and its impact on health in later life. Allergol. Int. 2017; 66(4): 515-22. https://dx.doi. org/10.1016/j.alit.2017.07.010.
  2. Jandhyala S.M., Talukdar R., Subramanyam C., Vuyyuru H., Sasikala M., Reddy D.N. Role of the normal gut microbiota. World J. Gastroenterol. 2015; 21(29): 8787-803. https://dx.doi.org/10.3748/wjg.v21.i29.8787.
  3. Koren O, Goodrich J.K., Cullender T.C., Spor A., Laitinen K., Backhed H.K. et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell. 2012; 150(3): 470-80. https://dx.doi.org/10.1016/j.cell.2012.07.008.
  4. Mueller N.T., Whyatt R, Hoepner L., Oberfield S., Dominguez-Bello M.G., Widen E.M. et al. Prenatal exposure to antibiotics, cesarean section and risk of childhood obesity. Int. J. Obes. (Lond). 2015; 39(4): 665-70. https://dx.doi. org/10.1038/ijo.2014.180.
  5. Mueller N.T., Bakacs E., Combellick J., Grigoryan Z., Dominguez-Bello M.G. The infant microbiome development: mom matters. Trends Mol. Med. 2015; 21(2): 109-17. https://dx.doi.org/10.1016/j.molmed.2014.12.002.
  6. Mulligan C.M., Friedman J.E. Maternal modifiers of the infant gut microbiota: metabolic consequences. J. Endocrinol. 2017; 235(1): R1-12. https://dx.doi. org/10.1530/JOE-17-0303.
  7. Ringholm L., Damm P., Mathiesen E.R. Improving pregnancy outcomes in women with diabetes mellitus: modern management. Nat. Rev. Endocrinol. 2019; 15(7): 406-16. https://dx.doi.org/10.1038/s41574-019-0197-3.
  8. Huget-Penner S., Feig D.S. Maternal thyroid disease and its effects on the fetus and perinatal outcomes. Prenat. Diagn. 2020; 40(9): 1077-84. https://dx.doi. org/10.1002/pd.5684.
  9. Zhou M., Wang M., Li J., Luo X., Lei M. Effects of thyroid diseases on pregnancy outcomes. Exp. Ther. Med. 2019; 18(3): 1807-15. https://dx.doi.org/10.3892/ etm.2019.7739.
  10. Delitala A.P, Capobianco G., Cherchi P.L., Dessole S., Delitala G. Thyroid function and thyroid disorders during pregnancy: a review and care pathway. Arch. Gynecol. Obstet. 2019; 299(2): 327-38. https://dx.doi.org/10.1007/ s00404-018-5018-8.
  11. Korevaar T.I.M., Derakhshan A., Taylor P.N., Meima M., Chen L., Bliddal S. et al. Consortium on Thyroid and Pregnancy - Study Group on Preterm Birth. Association of thyroid function test abnormalities and thyroid autoimmunity with preterm birth: a systematic review and meta-analysis. JAMA. 2019; 322(7): 632-41. https://dx.doi.org/10.1001/jama.2019.10931.
  12. Dodic M., Peers A., Coghlan J.P., Wintour M. Can excess glucocorticoid, in utero, predispose to cardiovascular and metabolic disease in middle age? Trends Endocrinol. Metab. 1999; 10(3): 86-91. https://dx.doi.org/10.1016/s1043-2760(98)00125-8.
  13. Berkane N., Liere P., Oudinet J.P., Hertig A., Lefevre G., Pluchino N. et al. From pregnancy to preeclampsia: a key role for estrogens. Endocr. Rev. 2017; 38(2): 123-44. https://dx.doi.org/ 10.1210/er.2016-1065.
  14. Amaral L.M., Wallace K., Owens M., LaMarca B. Pathophysiology and current clinical management of preeclampsia. Curr. Hypertens. Rep. 2017; 19(8): 61. https://dx.doi.org/10.1007/s11906-017-0757-7.
  15. Korpela K., Blakstad E.W., Moltu S.J., Strommen K., Nakstad B., Ronnestad A.E. et al. Intestinal microbiota development and gestational age in preterm neonates. Sci. Rep. 2018; 8(1): 2453. https://dx.doi.org/10.1038/s41598-018-20827-x.
  16. Younge N.E., Newgard C.B., Cotten C.M., Goldberg R.N., Muehlbauer M.J., Bain J.R. et al. Disrupted maturation of the microbiota and metabolome among extremely preterm infants with postnatal growth failure. Sci. Rep. 2019; 9(1): 8167. https://dx.doi.org/10.1038/s41598-019-44547-y.
  17. Stewart C.J., Marrs E.C.L., Magorrian S., Nelson A., Lanyon C., Perry J.D. et al. The preterm gut microbiota: changes associated with necrotizing enterocolitis and infection. Acta Paediatr. 2012; 101(11): 1121-7. https://dx.doi.org/10.1111/ j.1651-2227.2012.02801.x.
  18. Partty A., Luoto R., Kalliomaki M., Salminen S., Isolauri E. Effects of early prebiotic and probiotic supplementation on development of gut microbiota and fussing and crying in preterm infants: a randomized, double-blind, placebo-controlled trial. J. Pediatr. 2013; 163(5): 1272-7. e1-2. https://dx.doi. org/10.1016/j.jpeds.2013.05.035.
  19. Kumbhare S.V., Patangia D.V.V., Patil R.H., Shouche Y.S., Patil N.P. Factors influencing the gut microbiome in children: from infancy to childhood. J. Biosci. 2019; 44(2): 49.
  20. Patton L., Li N., Garrett T.J., Ruoss J.L., Russell J.T., de la Cruz D. et al. Antibiotics effects on the fecal metabolome in preterm infants. Metabolites. 2020; 10(8): 331. https://dx.doi.org/10.3390/metabo10080331.
  21. Wang Y., Liu Y., Bai J., Chen X. The effect of maternal postpartum practices on infant gut microbiota: a Chinese cohort study. Microorganisms. 2019; 7(11): 511. https://dx.doi.org/10.3390/microorganisms7110511.
  22. Deshpande G., Rao S., Patole S., Bulsara M. Updated meta-analysis of probiotics for preventing necrotizing enterocolitis in preterm neonates. Pediatrics. 2010; 125(5): 921-30. https://dx.doi.org/ 10.1542/peds.2009-1301.
  23. Grev J., Berg M., Soil R. Maternal probiotic supplementation for prevention of morbidity and mortality in preterm infants. Cochrane Database Syst. Rev. 2018; (12): CD012519. https://dx.doi.org/10.1002/14651858.CD012519.pub2.
  24. Wandro S., Osborne S., Enriquez C., Bixby C., Arrieta A., Whiteson K. The microbiome and metabolome of preterm infant stool are personalized and not driven by health outcomes, including necrotizing enterocolitis and late-onset sepsis. mSphere. 2018; 3(3): e00104-18. https://dx.doi.org/10.1128/ mSphere.00104-18.
  25. Callahan B.J., McMurdie P.J., Rosen M.J., Han A.W., Johnson A.J.A., Holmes S.P DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods. 2016; 13(7): 581-3. https://dx.doi.org/10.1038/nmeth.3869.
  26. Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15(12): 550. https://dx.doi.org/10.1186/s13059-014-0550-8.
  27. McMurdie P.J., Holme S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PloS One. 2013; 8(4): e61217. https://dx.doi.org/10.1371/ journal.pone.0061217.
  28. Korir M.L., Manning S.D., Davies H.D. Intrinsic maturational neonatal immune deficiencies and susceptibility to group B Streptococcus infection. Clin. Microbiol. Rev. 2017; 30(4): 973-89. https://dx.doi.org/10.1128/CMR.00019-17.
  29. Wall R., Ross R.P., Ryan C.A., Hussey S., Murphy B., Fitzgerald G.F. et al. Role of gut microbiota in early infant development. Clin. Med. Pediatr. 2009; 3: 45-54. https://dx.doi.org/10.4137/cmped.s2008.
  30. Greenwood C., Morrow A.L., Lagomarcino A.J., Altaye M., Taft D.H., Yu Z. et al. Early empiric antibiotic use in preterm infants is associated with lower bacterial diversity and higher relative abundance of Enterobacter. J. Pediatr. 2014; 165(1): 23-9. https://dx.doi.org/10.1016/jopeds.2014.01.010.
  31. Dunne-Castagna V.P., Taft D.H. Mother’s touch: milk IgA and protection from necrotizing enterocolitis. Cell Host Microbe. 2019; 26(2):147-8. https://dx.doi. org/10.1016/j.chom.2019.07.013.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies