Influence of controlled mechanical microvibration on embryo metabolomic profile


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective. To assess the influence of controlled mechanical microvibration (CMMV) on the metabolomic profile of the 5-day embryo culture media (CM). Materials and methods. This was a prospective cohort study of 62 CM samples collected from 44 patients. CM samples were obtained during IVF cycles on the fifth day of embryo development: 20 embryos were cultivated under CMMV conditions (microvibration group), and 42 embryos were cultivated under standard conditions (control group). In the microvibration group, the incubator was placed on an ArisTT180-s platform (K&S Advanced Systems Ltd, Israel) in an active vibration mode at a frequency of 40 Hz for 30 seconds with intervals of 30 minutes. The metabolites were extracted by adding three volumes of methanol and subsequently centrifuged. Chromatographic separation was performed using a reverse-phase chromatographic system on an Atlantis T3 C18 column (Waters, USA). Metabolites were detected on a hybrid quadrupole-time-of-flight mass spectrometer (Bruker Daltoniks, Germany). Results. The analysis revealed significant differences in the metabolite profiles between the groups. The most significant changes were in regulatory molecules (progesterone, acetylcholine, oleamide, prostaglandin A2 and its glutathione conjugate, 2,3-dinor-thromboxane B2 and 20-hydroxy prostaglandin E2), amino acids and their metabolites (glutamine, hydroxypropyl glutamate, lysyl-gamma-glutamate). Conclusions. There is a significant influence of controlled mechanical microvibration on the profile of metabolites in the culture media of the 5-day embryos. Further research should be conducted to analyze the impact of these differences on pregnancy rate, its course, and perinatal outcomes.

Full Text

Restricted Access

About the authors

Andrey Yu. Romanov

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russia

Email: romanov1553@yandex.ru
MD, Researcher of R&D Department

Chupalav M. Eldarov

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russia

Ph.D. in Chemistry, Senior Researcher at the Laboratory of Molecular Pathophysiology

Alexandra M. Frolova

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russia

Email: i.a.m.frolova@mail.ru
embryologist of IVF Department

Nataliya P. Makarova

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russia

Email: np_makarova@oparina4.ru
PhD, Leading Researcher of IVF Department

Mikhail Yu. Bobrov

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russia

Email: mbobr@mail.ru
Ph.D. in Chemistry, Head of the Laboratory of Molecular Pathophysiology

Nataliya V. Dolgushina

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russia

Email: n_dolgushina@oparina4.ru
M.D., Ph.D., M.P.H., Head of R&D Department

References

  1. Shafei R.A., Syrkasheva A.G., Romanov A.Y., Makarova N.P., Dolgushina N. V., Semenova M.L. Blastocyst hatching in humans. Russ. J. Dev. Biol. 2017; 48(1): 5- 15. https://dx.doi.org/10.1134/S1062360417010106.
  2. Романов А.Ю., Ковальская Е.В., Макарова Н.П., Сыркашева А.Г., Долгушина Н.В. Использование цейтраферной съемки для оценки качества эмбрионов человека в программах экстракорпорального оплодотворения. Цитология. 2017; 59(7): 462-6. [Romanov A.Yu., Kovalskaya E.V., Makarova N.P., Syrkasheva A.G., Dolgushina N.V. Using time-lapse photography to assess the quality of human embryos in in vitro fertilization programs. Tsitologiya/Cytology. 2017; 59(7): 462-6. (in Russian)]. Available at: https://elibrary.ru/download/elibrary_29773536_76509530.pdf
  3. Ибрагимова Э.О., Долгушина Н.В., Сыркашева А.Г., Романов А.Ю., Языкова О.И., Макарова Н.П. Роль вспомогательного хетчинга в программах лечения бесплодия методами вспомогательных репродуктивных технологий: обзор литературы. Гинекология. 2016; 18(2): 44-7. [Ibragimova E.O., Dolgushina N.V., Syrkasheva A.G., Romanov A.Yu., Yazykova O.I., Makarova N.P. The role of assisted hatching in infertility treatment programs using assisted reproductive technologies: a literature review. Ginekologiya/Gynecology. 2016; 18(2): 44-7. (in Russian)]. Available at: https://elibrary.ru/item.asp?id=27719470
  4. Долгушина Н.В., Ибрагимова Э.О., Романов А.Ю., Макарова Н.П., Довгань А.А., Сыркашева А.Г., Калинина Е.А. Роль проназного хетчинга в повышении эффективности программ вспомогательных репродуктивных технологий. Акушерство и гинекология. 2018; 3: 70-5. [Dolgushina N.V., Ibragimova E.O., Romanov A. Yu., Makarova N.P., Dovgan A.A., Syrkasheva A.G. et al. The role of pronase hatching in improving the effectiveness of assisted reproductive technology programs. Obstetrics and gynecology. 2018; 3: 70-5. (in Russian)]. https://dx.doi.org/10.18565/aig.2018.3.70-74.
  5. Ковальская Е.В., Сыркашева А.Г., Романов А.Ю., Макарова Н.П., Долгушина Н.В. Современные представления о компактизации эмбрионов человека в условиях in vitro. Технологии живых систем. 2017; 1: 25-35. [Kovalskaya E.V., Syrkasheva A.G., Romanov A.Yu., Makarova N.P., Dolgushina N.V. Modern concepts of human embryo compaction in vitro. Technologies of living systems. 2017; 1: 25-35. (in Russian)]. https://elibrary. ru/item.asp?id=29715173
  6. Biggers J.D., Summers M.C. Choosing a culture medium: making informed choices. Fertil. Steril. 2008; 90(3): 473-83. https://dx.doi.org/10.1016/j. fertnstert.2008.08.010.
  7. Loutradis D., Drakakis P., Kallianidis K., Sofikitis N., Kallipolitis G., Milingos S. et al. Biological factors in culture media affecting in vitro fertilization, preimplantation embryo development, and implantation. Ann. N. Y. Acad. Sci. 2000; 900: 325-35. https://dx.doi.org/10.1111/j.1749-6632.2000.tb06245.x.
  8. Chronopoulou E., Harper J.C. IVF culture media: past, present and future. Hum. Reprod. Update. 2015; 21(1): 39-55. https://dx.doi.org/10.1093/humupd/ dmu040.
  9. Brison D.R., Houghton F.D., Falconer D., Roberts S.A., Hawkhead J., Humpherson PG. et al. Identification of viable embryos in IVF by non-invasive measurement of amino acid turnover. Hum. Reprod. 2004; 19(10): 2319-24. https://dx.doi.org/10.1093/humrep/deh409.
  10. Thompson J.G. Culture without the petridish. Theriogenology. 2007; 67(1): 16-20. https://dx.doi.org/10.1016/j.theriogenology.2006.09.016.
  11. Gardner D.K., Lane M. Ex vivo early embryo development and effects on gene expression and imprinting. Reprod. Fertil. Dev. 2005; 17(3): 361-70. https:// dx.doi.org/10.1071/rd04103.
  12. Isachenko V., Maettner R., Sterzik K., Strehler E., Kreinberg R., Hancke K. et al. In-vitro culture of human embryos with mechanical micro-vibration increases implantation rates. Reprod. Biomed. Online. 2011; 22(6): 536-44. https:// dx.doi.org/10.1016/j.rbmo.2011.02.006.
  13. Muglia U., Motta P.M. A new morpho-functional classification of the Fallopian tube based on its three-dimensional myoarchitecture. Histol. Histopathol. 2001; 16(1): 227-37. https://dx.doi.org/10.14670/HH-16.227.
  14. Романов А.Ю., Фролова А.М., Макарова Н.П., Долгушина Н.В. Первый российский опыт применения управляемой механической микровибрации при культивировании эмбрионов человека в программах вспомогательных репродуктивных технологий. Акушерство и гинекология. 2019; 12: 120-5. [Romanov A.Yu., Frolova A.M., Makarova N.P., Dolgushina N.V. The first Russian experience of using controlled mechanical microvibration in the cultivation of human embryos in programs of assisted reproductive technologies. Obstetrics and gynecology. 2019; 12: 120-5. (in Russian)]. https:// dx.doi.org/10.18565/aig.2019.12.120-125.
  15. Lyons R.A., Djahanbakhch O., Mahmood T., Saridogan E., Sattar S., Sheaff M.T. et al. Fallopian tube ciliary beat frequency in relation to the stage of menstrual cycle and anatomical site. Hum. Reprod. 2002; 17(3): 584-8. https://dx.doi. org/10.1093/humrep/17.3.584.
  16. Lyons R.A., Saridogan E., Djahanbakhch O. The reproductive significance of human Fallopian tube cilia. Hum. Reprod. Update. 2006; 12(4): 363-72. https:// dx.doi.org/10.1093/humupd/dml012.
  17. Isachenko E., Maettner R., Isachenko V., Roth S., Kreienberg R., Sterzik K. Mechanical agitation during the in vitro culture of human pre-implantation embryos drastically increases the pregnancy rate. Clin. Lab. 2010; 56(11-12): 569-76.
  18. Matsuura K., Hayashi N., Kuroda Y., Takiue C., Hirata R., Takenami M. et al. Improved development of mouse and human embryos using a tilting embryo culture system. Reprod. Biomed. Online. 2010; 20(3): 358-64. https://dx.doi. org/10.1016/j.rbmo.2009.12.002.
  19. Romanov A.Y., Silachev D.N., Makarova N.P., Dolgushina N.V. Effect of mechanical microvibration on the quality of human embryos during in vitro culturing and outcomes of assisted reproduction technologies. Bull. Exp. Biol. Med. 2018; 165(4): 544-7. https://dx.doi.org/10.1007/ s10517-018-4211-x.
  20. Романов А.Ю., Силачев Д.Н., Макарова Н.П., Долгушина Н.В. Влияние механической микровибрации на качество эмбрионов человека при культивировании in vitro и исходы программ вспомогательных репродуктивных технологий. Клеточные технологии в биологии и медицине. 2018; 2: 86-90. [Romanov A.Yu., Silachev D.N., Makarova N.P., Dolgushina N.V. Effect of Mechanical Microvibration on the Quality of Human Embryos during In Vitro Culturing and Outcomes of Assisted Reproduction Technologies. Cell technologies in biology and medicine. 2018; (2):86-90. (in Russian)]. https:// elibrary.ru/item.asp?id=35040131
  21. Министерство здравоохранения Российской Федерации. Приказ Минздрава России от 30.08.2012 N. 107н (ред. от 11.06.2015) «О порядке использования вспомогательных репродуктивных технологий, противопоказаниях и ограничениях к их применению».
  22. Токарева А.О., Чаговец В.В., Чжихао Ван, Родионов В.В., Кометова В.В., Родионова М.В., Кононихин А. С., Стародубцева Н.Л., Чингин К., Франкевич В.Е., Хуаньвэнь Чэнь, Сухих Г.Т. Прямая масс-спектроме-трия как метод экспресс-идентификации опухолевой ткани у больных раком молочной железы. Акушерство и гинекология. 2017; 4: 119-25. [Tokareva A.O., Chagovets V.V., Chzhihao V., Rodionov V.V., Kometova V.V., Rodionova M.V. et al. Direct mass spectrometry as a method for rapid identification of tumor tissue in patients with breast cancer. Obstetrics and gynecology. 2017; 4:119-25. (in Russian)]. https://dx.doi.org/10.18565/ aig.2017.4.119-25.
  23. Smith C.A., Want E.J., O’Maille G., Abagyan R., Siuzdak G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 2006; 78(3): 779-87. https:// dx.doi.org/10.1021/ac051437y.
  24. Chong J., Wishart D.S., Xia J. Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis. Curr. Protoc. Bioinforma. 2019; 68(1): e86. https://dx.doi.org/10.1002/cpbi.86.
  25. Bylesjo M., Rantalainen M., Cloarec O., Nicholson J.K., Holmes E., Trygg J. OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification. J. Chemometr. 2006; 20(8-10): 341-51. https://dx.doi. org/10.1002/cem.1006.
  26. Некрасова М.Е., Чаговец В.В., Стародубцева Н.Л., Кононихин А. С., Салимова Д.Ф., Токарева А.О., Лагутин В.В., Наумов В.А., Назарова Н.М., Франкевич В.Е., Сухих Г.Т. Липидные маркеры неопластической трансформации эпителия шейки матки при заболеваниях, ассоциированных с вирусом папилломы человека. Акушерство и гинекология. 2018; 4: 64-70. [Nekrasova M.E., Chagovets V.V., Starodubtseva N.L., Kononikhin A.S., Salimova D.F., Tokareva A.O. et al. Lipid markers of neoplastic transformation of the cervical epithelium in diseases associated with the human papillomavirus. Obstetrics and gynecology. 2018; 4: 64-70. (in Russian)]. https://dx.doi. org/10.18565/aig.2018.4.64-70.
  27. Worley B., Powers R. Multivariate analysis in metabolomics. Curr. Metabolomics. 2012; 1(1): 92-107. https://dx.doi.org/10.2174/2213235X11301010092.
  28. Wishart D.S., Feunang Y.D., Marcu A., Guo A.C., Liang K., Vazquez-Fresno R. et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 2018; 46(D1): D608-17. https://dx.doi.org/10.1093/nar/gkx1089.
  29. Puscheck E.E., Awonuga A.O., Yang Y., Jiang Z., Rappolee D.A. Molecular biology of the stress response in the early embryo and its stem cells. Adv. Exp. Med. Biol. 2015; 843: 77-128. https://dx.doi.org/10.1007/978-1-4939-2480-6_4.
  30. Crosby I.M., Gandolfi F., Moor R.M. Control of protein synthesis during early cleavage of sheep embryos. Reproduction. 1988; 82(2): 769-75. https://dx.doi. org/10.1530/jrf.0.0820769.
  31. Edwards L.J., Williams D.A., Gardner D.K. Intracellular pH of the mouse preimplantation embryo: amino acids act as buffers of intracellular pH. Hum. Reprod. 1998; 13(12): 3441-8. https://dx.doi.org/10.1093/humrep/13.12.3441.
  32. Martin P.M. Amino acid transport regulates blastocyst implantation. Biol. Reprod. 2003; 69(4): 1101-8. https://dx.doi.org/10.1095/biolreprod.103.018010.
  33. Зорина И.М., Смольникова В.Ю., Бобров М.Ю. Изучение продуктов метаболизма эмбрионов в культуральных средах как инструмент определения потенциала к имплантации. Акушерство и гинекология. 2017; 2: 11-6. [Zorina I.M., Smolnikova V.Yu., Bobrov M.Yu. Studying the products of embryo metabolism in culture media as a tool for determining the potential for implantation. Obstetrics and gynecology. 2017; 2: 11-6. (in Russian)]. https:// dx.doi.org/10.18565/aig.2017.2.11-6.
  34. Зорина И.М., Смольникова В.Ю., Эльдаров Ч.М., Ярыгина С.А., Горшинова В.К., Макарова Н.П., Калинина Е.А., Бобров М.Ю. Анализ потребления глюкозы и глутамата в питательных средах как метод оценки качества эмбрионов человека пятых суток развития. Акушерство и гинекология. 2018; 5: 64-9. [Zorina I.M., Smolnikova V.Yu., Eldarov Ch.M., Yarygina S.A., Gorshinova V.K., Makarova N.P. et al. Analysis of glucose and glutamate consumption in nutrient media as a method for assessing the quality of human embryos of the fifth day of development. Obstetrics and gynecology. 2018; (5): 64-9. (in Russian)]. https://dx.doi.org/10.18565/aig.2018.5.64-69.
  35. Drabkova P., Andrlova L., Hampl R., Kandar R. Amino acid metabolism in human embryos. Physiol. Res. 2016; 65(5): 823-32. https://dx.doi.org/10.33549/ physiolres.933240.
  36. Picton H.M., Elder K., Houghton F.D., Hawkhead J.A., Rutherford A.J., Hogg J.E. et al. Association between amino acid turnover and chromosome aneuploidy during human preimplantation embryo development in vitro. Mol. Hum. Reprod. 2010; 16(8): 557-69. https://dx.doi.org/10.1093/molehr/gaq040.
  37. Gardner D.K., Kelley R.L. Impact of the IVF laboratory environment on human preimplantation embryo phenotype. J. Dev. Orig. Health Dis. 2017; 8(4): 41835. https://dx.doi.org/10.1017/S2040174417000368.
  38. Houghton1 F.D. Non-invasive amino acid turnover predicts human embryo developmental capacity. Hum. Reprod. 2002; 17(4): 999-1005. https:// dx.doi.org/10.1093/humrep/17.4.999.
  39. Seli E., Botros L., Sakkas D., Burns D.H. Noninvasive metabolomic profiling of embryo culture media using proton nuclear magnetic resonance correlates with reproductive potential of embryos in women undergoing in vitro fertilization. Fertil. Steril. 2008; 90(6): 2183-9. https://dx.doi.org/10.1016/ j.fertnstert.2008.07.1739.
  40. Estrada-Cortes E., Negron-Perez V.M., Tribulo P., Zenobi M.G., Staples C.R., Hansen P.J. Effects of choline on the phenotype of the cultured bovine preimplantation embryo. J. Dairy Sci. 2020; 103(11): 10784-96. https:// dx.doi.org/10.3168/jds.2020-18598.
  41. Togashi K., Kumagai J., Sato E., Shirasawa H., Shimoda Y., Makino K. et al. Dysfunction in gap junction intercellular communication induces aberrant behavior of the inner cell mass and frequent collapses of expanded blastocysts in mouse embryos. J. Assist. Reprod. Genet. 2015; 32(6): 969-76. https:// dx.doi.org/10.1007/s10815-015-0479-1.
  42. Ehrlich H.P, Sun B., Saggers G.C., Kromath F. Gap junction communications influence upon fibroblast synthesis of Type I collagen and fibronectin. J. Cell. Biochem. 2006; 98(4): 735-43. https://dx.doi.org/10.1002/jcb.20852.
  43. van der Weiden R.M., Helmerhorst F.M., Keirse M.J. Which prostanoid metabolites should be determined for the study of reproductive processes? Prostaglandins Leukot. Essent. Fatty Acids. 1998; 58(3): 205-7. https:// dx.doi.org/10.1016/s0952-3278(98)90115-6.
  44. van der Weiden R.M., Helmerhorst F.M., Keirse M.J. Prostanoid excretion before in vitro fertilization relates to the likelihood of pregnancy. Prostaglandins Leukot. Essent. Fatty Acids. 1995; 53(6): 419-21. https://dx.doi.org/10.1016/0952-3278(95)90106-x.
  45. van der Weiden R.M., Noort W.A., Naaktgeboren N., Helmerhorst F.M., Keirse M.J. Prostanoid levels in in vitro fertilization culture medium are not related to the likelihood of implantation. Fertil. Steril. 1994; 62(6): 1217-20. https:// dx.doi.org/10.1016/s0015-0282(16)57188-x.
  46. Geissler FT., Kuzan F.B., Faustman E.M., Henderson W.R. Lipid mediator production by post-implantation rat embryos in vitro. Prostaglandins. 1989; 38(2):145-55. https://dx.doi.org/10.1016/0090-6980(89)90078-6.
  47. Boruszewska D., Kowalczyk-Zieba I., Suwik K., Staszkiewicz-Chodor J., Jaworska J., Lukaszuk K. et al. Prostaglandin E2 affects in vitro maturation of bovine oocytes. Reprod. Biol. Endocrinol. 2020; 18(1): 40. https://dx.doi. org/10.1186/s12958-020-00598-9.
  48. Talukder A.K., Yousef M.S., Rashid M.B., Awai K., Acosta T.J., Shimizu T. et al. Bovine embryo induces an anti-inflammatory response in uterine epithelial cells and immune cells in vitro: possible involvement of interferon tau as an intermediator. J. Reprod. Dev. 2017; 63(4): 425-34. https://dx.doi.org/10.1262/ jrd.2017-056.
  49. Rodrigues S.A.D., Pontelo T.P., Kussano N.R., Kawamoto T.S., Leme L.O., Caixeta F.M.C. et al. Effects of prostaglandins E2 and F2a on the in vitro maturation of bovine oocytes. Domest. Anim. Endocrinol. 2020; 72: 106447. https://dx.doi.org/10.1016/j.domaniend.2020.106447.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies