PLACENTA-SPECIFIC MICRO-RNA EXPRESSION IN FETAL GROWTH RESTRICTION


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective. To analyze the expression of placenta-specific microRNAs in pregnant women with fetal growth restriction (FGR) and with physiological pregnancy. Materials and methods. The investigation enrolled 42 women at 30-34 weeks’ gestation (27 with FGR and 15 with uncomplicated pregnancy), who were matched for age, anthropometric characteristics, features of an obstetric and gynecological history, and concomitant diseases. All the pregnant women with FGR were observed to have manifestations of different degrees of fetoplacental insufficiency. The patients underwent peripheral venous blood sampling. The expression of eight microRNAs (microRNA- 10b-5p, microRNA-145-5p, microRNA-122-5p, microRNA-141-3p, microRNA-125b-5p, microRNA-205-5p, microRNA-210-3p, and microRNA-517-5p) was determined by real-time polymerase chain reaction (PCR). The change in microRNA expression levels was estimated using the AST method. Results. It was ascertained that the expression of microRNA-125b-5p in the blood of pregnant women with FGR was statistically significantly lower (12.3 (8.9; 13.8)) than that in women with physiological pregnancy (8.1 (6.6; 9.1)) (p=0.011). The magnitude of expression change (fold change) for microRNA-125b-5p was 5.25. Conclusion. The findings indicate a change in the microRNA-125b-5p expression levels in the pregnant women with FGR versus the women with uncomplicated pregnancy. The role of micro-RNA-125b-5p in the genesis of FGR can be explained by the ability of this microRNA to affect the vascular endothelium, including the placental vasculature, disrupting the processes of endothelium-dependent relaxation, angiogenesis, endothelial cell proliferation, and other functions, Including the regulation of platelet adhesion and aggregation.

Full Text

Restricted Access

About the authors

Irina O. Bushtyreva

"Professor Bushtyreva Clinic" LLC

Email: kio4@mail.ru
Dr. Med. Sci., Full Professor 58/7A Sobornyi ave., Rostov-on-Don, 344010, Russia

Natalia B. Kuznetsova

Rostov State Medical University, Ministry of Health of the Russian Federation; "Professor Bushtyreva Clinic" LLC

Email: lauranb@inbox.ru
Dr. Med. Sci., Professor at the Department of Simulation education 29 Nahichevansky ave., Rostov-on-Don, 344022, Russia

Ekaterina A. Zabanova

Rostov State Medical University, Ministry of Health of the Russian Federation; Perinatal Center

Email: rock-fe@mail.ru
Postgraduate at the Department of Simulation education 29 Nahichevansky ave., Rostov-on-Don, 344022, Russia

Elena V. Butenko

South Federal University

Email: evbutenko@sfedu.ru
Cand. Bio. Sci., Associate Professor at the Department of Genetics 194/1 Stachki ave., Rostov-on-Don, 344090, Russia

Inna O. Pokudina

South Federal University

Email: ipokudina@sfedu.ru
Cand. Bio. Sci., Senior researcher at the Laboratory of Biomedicine 194/1 Stachki ave., Rostov-on-Don, 344090, Russia

Tatiana P. Shkurat

South Federal University

Email: tshkurat@sfedu.ru
Dr. Bio. Sci., Full Professor, Director of Research Institute of Biology 194/1 Stachki ave., Rostov-on-Don, 344090, Russia

References

  1. American College of Obstetricians and Gynecologists’ Committee on Practice Bulletins - Obstetrics and the Society for Maternal-Fetal Medicin. ACOG Practice bulletin no. 204: fetal growth restriction. Obstet. Gynecol. 2019; 133(2): e97-109. https://dx.doi.org/10.1097/AOG.0000000000003070.
  2. Salafia C.M., Minior V.K., Pezzullo J.C., Popek E.J., Rosenkrantz T.S., Vintzileos A.M. Intrauterine growth restriction in infants of less than thirty-two weeks’ gestation: associated placental pathologic features. Am. J. Obstet. Gynecol. 1995; 173(4): 1049-57. https://dx.doi.org/10.1016/ 0002-9378(95)91325-4.
  3. Lai E.C. Micro RNAs are complementary to 3’ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat. Genet. 2002; 30(4): 3634. https://dx.doi.org/10.1038/ng865.
  4. Calin G.A., Croce C.M. MicroRNA signatures in human cancers. Nat. Rev. Cancer. 2006; 6(11): 857-66. https://dx.doi.org/10.1038/nrc1997.
  5. Ширшова А.Н., Аушев В.Н., Филипенко М.Л., Кушлинский Н.Е. МикроРНК при онкологических заболеваниях. Молекулярная медицина. 2015; 2: 4-12.
  6. Ивкин Д.Ю., Лисицкий Д.С., Захаров Е.А., Любишин М.М., Карпов А.А., Буркова Н.В., Оковитый С.В., Тюканин А.И. МикроРНК как перспективные диагностические и фармакологические агенты. Астраханский медицинский журнал. 2015; 10(4): 8-24
  7. Ludwig N., Leidinger P., Becker K., Backes C., Fehlmann T., Pallasch C. et al. Distribution of miRNA expression across human tissues. Nucleic Acids Res. 2016; 44(8): 3865-77. https://dx.doi.org/10.1093/nar/ gkw116.
  8. Низяева Н.В., Кан Н.Е., Тютюнник В.Л., Ломова Н.А., Наговицына М.Н., Прозоровская К.Н., Щеголев А.И. МикроРНК как важные диагностиче^ие предвестники развития акушерской патологии. Вестник Российской академии медицинских наук. 2015; 70(4): 484-92.
  9. Hudson T.J., Anderson W., Artez A., Barker A.D., Bell C., Bernabe R.R. et al. International Cancer Genome Consortium. International network of cancer genome projects. Nature. 2010; 464(7291): 993-8. https://dx.doi.org/10.1038/ nature08987.
  10. Enquobahrie D.A., Abetew D.F., Sorensen T.K., Willoughby D., Chidambaram K., Williams M.A. Placental microRNA expression in pregnancies complicated by preeclampsia. Am. J. Obstet. Gynecol. 2011; 204(2): 178. e12-21. https:// dx.doi.org/10.1016/j.ajog.2010.09.004.
  11. Mayor-Lynn K., Toloubeydokhti T., Cruz A.C., Chegini N. Expression profile of microRNAs and mRNAs in human placentas from pregnancies complicated by preeclampsia and preterm labor. Reprod. Sci. 2011; 18(1): 46-56. https:// dx.doi.org/10.1177/1933719110374115.
  12. Gilad S., Meiri E., Yogev Y., Benjamin S., Lebanony D., Yerushalmi N. et al. Serum microRNAs are promising novel biomarkers. PLoS One. 2008; 3(9): e3148. https://dx.doi.org/10.1371/journal.pone.0003148.
  13. Tsochandaridis M., Nasca L., Toga C., Levy-Mozziconacci A. Circulating microRNAs as clinical biomarkers in the predictions of pregnancy complications. Biomed. Res. Int. 2015; 2015: 294954. https://dx.doi.org/10.1155/2015/ 294954.
  14. Fenton T.R., Kim J.H. A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. BMC Pediatr. 2013; 13: 59. https://dx.doi. org/10.1186/1471-2431-13-59.
  15. Balcells I., Cirera S., Busk P.K. Specific and sensitive quantitative RT-PCR of miRNAs with DNA primers. BMC Biotechnol. 2011; 11: 70. https://dx.doi. org/10.1186/1472-6750-11-70.
  16. Busk P.K. A tool for design of primers for microRNA-specific quantitative RT-qPCR. BMC Bioinformatics. 2014; 15: 29. https://dx.doi.org/10.1186/1471-2105-15-29.
  17. Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using realtime quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001; 25(4): 402-8. https://dx.doi.org/10.1006/meth.2001.1262.
  18. Cai X., Lu S., Zhang Z., Gonzalez C.M., Damania B., Cullen B.R. Kaposi’s sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc. Natl. Acad. Sci. USA. 2005; 102(15): 5570-5. https://dx.doi. org/10.1073/pnas.0408192102.
  19. Gu Y., Sun J., Groome L.J., Wang Y. Differential miRNA expression profiles between the first and third trimester human placentas. Am. J. Physiol. Endocrinol. Metab. 2013; 304(8): E836-43. https://dx.doi.org/10.1152/ajpendo.00660.2012.
  20. Kriegel A.J., Baker M.A., Liu Y., Liu P., Cowley A.W. Jr., Liang M. Endogenous microRNAs in human microvascular endothelial cells regulate mRNAs encoded by hypertension-related genes. Hypertension. 2015; 66(4): 793-9. https://dx.doi. org/10.1161 hypertensionaha.115.05645.
  21. Grodecka-Szwajkiewicz D., Ulanczyk Z., Zagrodnik E., Luczkowska K., Roginska D., Kawa M.P. et al. Differential secretion of angiopoietic factors and expression of microRNA in umbilical cord blood from healthy appropriate-for-gestational-age preterm and term newborns - in search of biomarkers of angiogenesis-related processes in preterm birth. Int. J. Mol. Sci. 2020; 21(4): 1305. https://dx.doi.org/10.3390/ ijms21041305.
  22. Li D., Yang P., Xiong Q., Song X., Yang X., Liu L. et al. MicroRNA-125a/b-5p inhibits endothelin-1 expression in vascular endothelial cells. J. Hypertens. 2010; 28(8): 1646-54. https://dx.doi.org/10.1097/HJH.0b013e32833a4922.
  23. Гусар В.А., Тимофеева А.В., Кан Н.Е., Чаговец В.В., Ганичкина М.Б., Франкевич В.Е. Профиль экспрессии плацентарных микроРНК -регуляторов окислительного стресса при синдроме задержки роста плода. Акушерство и гинекология. 2019; 1: 74-80.
  24. Yu Q., Lu Z., Tao L., Yang L., Guo Y., Yang Y. et al. ROS-dependent neuroprotective effects of NaHS in ischemia brain injury involves the PARP/AIF pathway. Cell. Physiol. Biochem. 2015; 36(4): 1539-51. https://dx.doi.org/10.1159/000430317.
  25. Hromadnikova I., Kotlabova K., Hympanova L., Krofta L. Cardiovascular and cerebrovascular disease associated microRNAs are dysregulated in placental tissues affected with gestational hypertension, preeclampsia and intrauterine growth restriction. PLoS One. 2015; 10(9): e0138383. https://dx.doi.org/10.1371/journal.pone.0138383.
  26. Hromadnikova I., Kotlabova K., Hympanova L., Krofta L. Gestational hypertension, preeclampsia and intrauterine growth restriction induce dysregulation of cardiovascular and cerebrovascular disease associated microRNAs in maternal whole peripheral blood. Thromb. Res. 2016; 137: 126-40. https://dx.doi.org/10.1016/ j.thromres.2015.11.032.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies