Non-invasive testing of human preimplantation embryos in vitro as a way to predict the outcomes of in vitro fertilization programs


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The data available in the current literature on non-invasive methods for diagnosing the quality of an embryo and its genetic status were systematically analyzed. The review includes data from foreign and Russian articles published in Pubmed on this topic over the past 3 years. The improvement in the outcome of the IVF program is determined by many factors, including the quality of an embryo. The expansion of knowledge in relation to its development and physiology largely due to various current data processing methods and technologies can determine not only the level of embryonic morphological development, but also to predict the potential for further development. The non-invasiveness, safety, and efficiency of the method are the main criteria for current diagnosis of the potential of the embryo. Numerous studies of the embryo culture medium meet these requirements and seem promising in the selection of high-quality embryos. Conclusion. The study of the molecular composition of culture media for the embryo makes it possible to comprehensively consider its life cycle, to assess the relationship of cellular metabolism to deep regulatory mechanisms. The development of omix technologies could gain insights into the molecular profile of the embryo culture medium, by identifying and characterizing the biomarkers that are potentially important for the onset of pregnancy. Further improvement of methods for analyzing culture media, processing the data, and increasing the future scope of research can provide a new, non-invasive predictor for the quality of the embryo and its implantation potential.

Full Text

Restricted Access

About the authors

E. Z Valiakhmetova

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation

Email: ibraeva1988@list.ru
postgraduate student at the Department of Assisted Reproductive Technologies in the Treatment of Infertility 117997, Russia, Moscow, Ac. Oparina str., 4

E. V Kulakova

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation

Email: e_kulakova@oparina4.ru
Ph.D. in physics and mathematics, Director 117997, Russia, Moscow, Ac. Oparina str., 4

Yu. S. Skibina

Research and Production Enterprise "Nanostructured Glass Technology" and International Research and Education Center "Structure-Mediated al Nanobiophotonics"

Email: director@nano-glass.ru
Ph.D. in physics and mathematics, Director 410033, Russia, Saratov, pr. 50 let Octyabrya, 101

A. Yu Gryaznov

Research and Production Enterprise "Nanostructured Glass Technology" and International Research and Education Center "Structure-Mediated al Nanobiophotonics"

Email: director@nano-glass.ru
Researcher 410033, Russia, Saratov, pr. 50 let Octyabrya, 101

A. P Sysoeva

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation

Email: a_sysoeva@oparina4.ru
embryologist at the Department of Assisted Reproductive Technologies in the Treatment of Infertility 117997, Russia, Moscow, Ac. Oparina str., 4

N. P Makarova

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation

Email: np_makarova@oparina4.ru
Dr. Bio. Sci., Leading Researcher at the Department of Assisted Reproductive Technologies in the Treatment of Infertility 117997, Russia, Moscow, Ac. Oparina str., 4

E. A Kalinina

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation

Email: e_kalinina@oparina4.ru
Dr. Med. Sci., Professor, Head of the Department of Assisted Reproductive Technologies in the Treatment of Infertility 117997, Russia, Moscow, Ac. Oparina str., 4

References

  1. Armstrong S., Bhide P, Jordan V., Pacey A., Farquhar C. Time-lapse systems for embryo incubation and assessment in assisted reproduction. Cochrane Database Syst. Rev. 2019; (5): CD011320. https://dx.doi.org/10.1002/ 14651858.CD011320.pub4.
  2. Сысоева А.П,Макарова Н.П.,Калинина Е.А., Скибина Ю.С.,Занишевская А.А., Янчук Н.О., Грязнов А.Ю. Повышение эффективности вспомогательных репродуктивных технологий с помощью искусственного интеллекта и машинного обучения на эмбриологическом этапе. Акушерство и гинекология. 2020; 7: 28-36. https://dx.doi.org/10.18565/aig.2020.7.28-36.
  3. Зорина И.М., Смольникова В.Ю., Эльдаров Ч.М., Ярыгина С. А., Горшинова В.К., Макарова Н.П., Калинина Е.А., Бобров М.Ю. Анализ потребления глюкозы и глутамата в питательных средах как метод оценки качества эмбрионов человека пятых суток развития. Акушерство и гинекология. 2018; 5: 64-9
  4. Драпкина Ю.С., Тимофеева А.В., Чаговец В.В., Макарова Н.П., Калинина Е.А. Прогнозирование результативности программ ВРТ по профилю экспрессии малых некодирующих РНКвкультуральной среде эмбриона. Акушерство и гинекология. 2020; 4 (Приложение): 82-3
  5. Hong B., Hao Y. The outcome of human mosaic aneuploid blastocysts after intrauterine transfer: A retrospective study. Medicine (Baltimore). 2020; 99(9): e18768. https://dx.doi.org/10.1097/MD.0000000000018768.
  6. Gleicher N., Orvieto R.J. Is the hypothesis of preimplantation genetic screening (PGS) still supportable? A review. J. Ovarian Res. 2017; 10(1): 21. https:// dx.doi.org/10.1186/s13048-017-0318-3.
  7. Rubio C., Rienzi L., Navarro-Sanchez L., Cimadomo D., Garcia-Pascual C.M., Albricci L. et al. Embryonic cell-free DNA versus trophectoderm biopsy for aneuploidy testing: concordance rate and clinical implications. Fertil. Steril. 2019; 112(3): 510-9. https://dx.doi.org/10.1016/j.fertnstert.2019.04.038.
  8. Yeung Q.S.Y., Zhang Y.X., Chung J.P.W., Lui W.T., Kwok Y.K.Y., Gui B. et al. A prospective study of non-invasive preimplantation genetic testing for aneuploidies (NiPGT-A) using next-generation sequencing (NGS) on spent culture media (SCM). Assist. Reprod. Genet. 2019; 36(8): 1609-21. https://dx.doi.org/10.1007/ s10815-019-01517-7.
  9. Jiao J., Shi B., Sagnelli M., Yang D., Yao Y., Li W. et al. Minimally invasive preimplantation genetic testing using blastocyst culture medium. Hum. Reprod. 2019; 34(7): 1369-79. https://dx.doi.ois/10.1093/humrep/dez075.
  10. Vagnini L.D., Petersen C.G., Renzi A., Dieamant F., Oliveira J.B.A., Oliani A.H. et al. Relationship between age and blastocyst chromosomal ploidy analyzed by noninvasive preimplantation genetic testing for aneuploidies (niPGT-A). JBRA Assist. Reprod. 2020; 24(4): 395-9. https://dx.doi.org/10.5935/ 1518-0557.20200061.
  11. Capalbo A., Ubaldi F.M., Cimadomo D., Noli L., Khalaf Y., Farcomeni A. et al. MicroRNAs in spent blastocyst culture medium are derived from trophectoderm cells and can be explored for human embryo reproductive competence assessment. Fertil. Steril. 2016; 105(1): 225-35. e1-3. https:// dx.doi.org/10.1016/j.fertnstert.2015.09.014.
  12. Cecchino G.N., Garcia-Velasco J.A. Mitochondrial DNA copy number as a predictor of embryo viability. Fertil. Steril. 2019; 111(2): 205-11. https:// dx.doi.org/10.1016/j.fertnstert.2018.11.021.
  13. Sanchez T., Zhang M., Needleman D., Seli E. Metabolic imaging via fluorescence lifetime imaging microscopy for egg and embryo assessment. Fertil. Steril. 2019; 111(2): 212-8. https://dx.doi.org/10.1016/j.fertnstert.2018.12.014.
  14. Тимофеева А.В., Калинина Е.А., Драпкина Ю.С., Чаговец В.В., Макарова Н.П., Сухих Г.Т. Оценка качества эмбриона по профилю экспрессии малых некодирующих РНК в культуральной среде эмбриона в программах ВРТ. Акушерство и гинекология. 2019; 6: 79-86.
  15. Ni M., Xue Y., Ding J., Yang S., Zheng A., Pu Y. et al. Correlation between differential expression of microRNA and quality of embryos. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2020; 37(9): 938-41. https://dx.doi.org/10.3760/ cma.j.cn511374-20190516-00244.
  16. Sdnchez-Ribas I., Diaz-Gimeno P., Quinonero A., Ojeda M., Larreategui Z., Ballesteros A., Dominguez F. NGS analysis of human embryo culture media reveals miRNAs of extra embryonic origin. Reprod. Sci. 2019 ; 26(2): 214-22. https:// dx.doi.org/10.1177/1933719118766252.
  17. Abu-Halima M, Khaizaran Z.A., Ayesh B.M., Fischer U., Khaizaran S.A., Al-Battah F. et al. MicroRNAs in combined spent culture media and sperm are associated with embryo quality and pregnancy outcome. Fertil. Steril. 2020; 113(5): 970-80. e2. https://dx.doi.org/10.1016/j.fertnstert.2019.12.028.
  18. Zhou W., Dimitriadis E. Secreted micro RNA to predict embryo implantation outcome: from research to clinical diagnostic application. Front. Cell Dev. Biol. 2020; 8: 586510. https://dx.doi.org/10.3389/fcell.2020.586510.
  19. Драпкина Ю.С., Тимофеева А.В., Чаговец В.В., Кононихин А. С., Франкевич В.Е., Калинина Е.А. Применение омиксных технологий в решении проблем репродуктивной медицины. Акушерство и гинекология. 2018; 9: 24-32.
  20. Rinschen M.M., Ivanisevic J., Giera M., Siuzdak G. Identification of bioactive metabolites using activity metabolomics: A review. Nat. Rev. Mol. Cell Biol. 2019; 20(6): 353-67. https://dx.doi.org/10.1038/s41580-019-0108-4.
  21. Зорина И.М., Эльдаров Ч.М., Ярыгина С.А., Макарова Н.П., Трофимов Д.Ю., Смольникова В.Ю., Калинина Е.А., Бобров М.Ю. Профилирование метаболитов в питательных средах пятидневных эмбрионов человека. Биомедицинская химия. 2017; 63(5): 385-91.
  22. Ding J., Xu T., Tan X., Jin H., Shao J., Li H. Raman spectrum: A potential biomarker for embryo assessment during in vitro fertilization. Exp. Ther. Med. 2017; 13(5): 1789-92. https://dx.doi.org/10.3892/ etm.2017.4160.
  23. Seli E., Botros L., Sakkas D., Burns D.H. Noninvasive metabolomic profiling of embryo culture media using proton nuclear magnetic resonance correlates with reproductive potential of embryos in women undergoing in vitro fertilization. Fertil. Steril. 2008; 90(6): 2183-9. https://dx.doi.org/10.1016/ j.fertnstert.2008.07.1739.
  24. Katz-Jaffe M.G., Gardner D.K., Schoolcraft W.B. Proteomic analysis of individual human embryos to identify novel biomarkers of development and viability. Fertil. Steril. 2006; 85(1): 101-7. https://dx.doi.org/10.1016/j.fertnstert.2005.09.011.
  25. Abreu C.M., Thomas V., Knaggs P., Bunkheila A., Cruz A., Teixeira S.R. et al. Noninvasive molecular assessment of human embryo development and implantation potential. Biosens. Bioelectron. 2020; 157: 112144. https:// dx.doi.org/10.1016/j.bios.2020.112144.
  26. Huang G., Zhou C., Wei C.J., Zhao S., Sun F., Zhou H. et al. Evaluation of in vitro fertilization outcomes using interleukin-8 in culturemedium of human preimplantation embryos. Fertil. Steril. 2017; 107(3): 649-56. https:// dx.doi.org/10.1016/j.fertnstert.2016.11.031.
  27. Ferreira L.M.R., Meissner T.B., Tilburgs T., Strominger J.L. HLA-G: At the interface of maternal-fetal tolerance. Trends Immunol. 2017; 38(4): 272-86. https://dx.doi.org/10.1016/j.it.2017.01.009.
  28. Diaz R.R., Blanes Z.R., Sanchez V., Gonzalez Perez J., Bethencourt J.C.A. Embryo sHLA-G secretion is related to pregnancy rate. Zygote. 2019; 27(2): 78-81. https://dx.doi.org/1017/S0967199419000054.
  29. Niu Z., Wang L., Pang R.T.K., Guo Y., Yeung W.S.B., Yao Y. A meta-analysis of the impact of human leukocyte antigen-G on the outcomes of IVF/ICSI. Reprod. Biomed. Online. 2017; 34(6): 611-8. https://dx.doi.org/10.1016/ j.rbmo.2017.03.002.
  30. Lindgren K.E., Gulen Yaldir F., Hreinsson J., Holte J., Karehed K., Sundstrom-Poromaa I. et al. Differences in secretome in culture media when comparing blastocysts and arrested embryos using multiplex proximity assay. Med. Sci. 2018; 123(3): 143-52. https://dx.doi.org/10.1080/03009734.2018.1490830.
  31. Kaihola H., Yaldir F.G., Bohlin T., Samir R., Hreinsson J., Akerud H. Levels of caspase-3 and histidine-rich glycoprotein in the embryo secretome as biomarkers of good-quality day-2 embryos and high-quality blastocysts. PLoS One. 2019; 14(12): e0226419. https://dx.doi.org/10.1371/journal.pone.0226419.
  32. Castillo J., Jodar M., Oliva R. The contribution of human sperm proteins to the development and epigenome of the preimplantation embryo. Hum. Reprod. Update. 2018; 24(5): 535-55. https://dx.doi.org/10.1093/humupd/ dmy017.
  33. Rinschen M.M., Ivanisevic J., Giera M., Siuzdak G. Identification of bioactive metabolites using activity metabolomics. Nat. Rev. Mol. Cell Biol. 2019; 20(6): 353-67. https://dx.doi.org/10.1038/s41580-019-0108-4.
  34. Burmistrova N.A., Pidenko P.S., Pidenko S.A., Skibina Yu.S., Monakhova Yu.B. Simultaneous determination of proteins in microstructured optical fibers supported by chemometric tools. Anal. Bioanal. Chem. 2019; 411(27): 7055-9. https://dx.doi.org/10.1007/s00216-019-02085-6.
  35. Cordero E., Latka I., Matthaus C., Schie I., Popp J.J. Invivo Raman spectroscopy: from basics to applications. Biomed. Opt. 2018; 23(7): 1-23. https:// dx.doi.org/10.1117/1.JBO.23.7.071210.
  36. Liang B., Gao Y., Xu J., Song Y., Xuan L., Shi T. et al. Raman profiling of embryo culture medium to identify aneuploid and euploid embryos. Fertil. Steril. 2019; 111(4): 753-62. e1. https://dx.doi.org/10.1016/j.fertnstert.2018.11.036.
  37. Ba§tu E., Parlatan U., Ba§ar G., Yumru H., Bavili N., Sag F. et al. Spectroscopic analysis of embryo culture media for predicting reproductive potential in patients undergoing in vitro fertilization. Turk. J. Obstet. Gynecol. 2017; 14(3): 145-50. https://dx.doi.org/10.4274/tjod.92604.
  38. Bingol K., Brtischweiler R. Knowns and unknowns in metabolomics identified by multidimensional NMR and hybrid MS/NMR methods. Curr. Opin. Biotechnol. 2017; 43: 17-24. https://dx.doi.org/10.1016/j.copbio.2016.07.006.
  39. Gulin A., Nadtochenko V., Solodina A., Pogorelova M., Panait A., Pogorelov A. A novel approach for 3D reconstruction of mice full-grown oocytes by time-of-flight secondary ion mass spectrometry. Anal. Bioanal. Chem. 2020; 412(2): 311-9. https://dx.doi.org/10.1007/s00216-019-02237-8.
  40. Gulin A., Nadtochenko V., Astafiev A., Pogorelova V., Rtimi S., Pogorelov A. Correlating microscopy techniques and ToF-SIMS analysis of fully grown mammalian oocytes. Analyst. 2016; 141(13): 4121-9. https:// dx.doi.org/10.1039/c6an00665e.
  41. Iles R.K., Sharara F.I., Zmuidinaite R., Abdo G., Keshavarz.S, Butler S.A. Secretome profile selection of optimal IVF embryos by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. J. Assist. Reprod. Genet. 2019; 36(6): 1153-60. https://dx.doi.org/10.1007/s10815-019-01444-7.
  42. Curchoe C.L., Bormann C.L. Artificial intelligence and machine learning for human reproduction and embryology presented at ASRM and ESHRE 2018. J. Assist. Reprod. Genet. 2019; 36(4): 591-600. https://dx.doi.org/10.1007/ s10815-019-01408-x.
  43. Kaufmann S.J., Eastaugh J.L., Snowden S., Smye S.W., Sharma V. The application of neural networks in predicting the outcome of in-vitro fertilization. Hum. Reprod. 1997; 12(7): 1454-7. https://dx.doi.org/10.1093/humrep/12.7.1454.
  44. Miyagi Y., Habara T., Hirata R., Hayashi N. Feasibility of artificial intelligence for predicting live birth without aneuploidy from a blastocyst image. Reprod. Med. Biol. 2019; 18(2): 204-11. https://dx.doi.org/10.1002/rmb2.12267.
  45. Spicer R., Salek R.M., Moreno P., Canueto D., Steinbeck C. Navigating freely-available software tools for metabolomics analysis. Metabolomics. 2017; 13(9): 106. https://dx.doi.org/10.1007/s11306-017-1242-7.
  46. Gessulat S., Schmidt T., Zolg D.P., Samaras P., Schnatbaum K., Zerweck J., Knaute T. et al. Prosit: proteome-wide prediction of peptide tandem mass spectra by deep learning. Nat. Methods. 2019; 16(6): 509-18. https://dx.doi. org/10.1038/s41592-019-0426-7.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies