Artificial intelligence on guard of reproductive health


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

International large-scale studies have shown that infertility affects about 186 million people worldwide. At the same time, there is a negative trend: the number of infertile couples increases every year. With the clinical introduction of assisted reproductive technologies (ARTs), mainly artificial insemination, there are chances to solve this problem. However, despite the high level of development of modern reproductive medicine, only about one third of interventions are successful. To make the diagnosis of infertility more accurate and treatment more effective, it is advisable for the medical community to use software products based on artificial intelligence technologies in everyday practice. This will be able to timely identify and study potential relationships in large datasets and to create reliable predictive models using machine learning techniques. The most advanced areas of artificial intelligence research in reproductology are to improve the quality of biomaterial assessment for in vitro fertilization and to predict the outcome of artificial insemination, by taking into account the data of married couples. The main machine learning methods used to solve problems in reproductive medicine are the support vector method, the random forest algorithm, the decision tree algorithm, Bayesian classifiers, and artificial neural networks. The major goal of recent research in this field is to achieve maximum accuracy of software algorithms and to obtain results that can subsequently provide reliable prediction, diagnosis, and treatment of diseases. Conclusion. This review considers the main ways of applying the machine learning algorithms in reproductive medicine, the stages of creating training models, some limitations and prospects for introducing these methods in clinical practice.

Full Text

Restricted Access

About the authors

A. A Ivshin

Petrozavodsk State University

Email: scipeople@mail.ru
Candidate of Medical Sciences, Associate Professor, Head of the Department of Obstetrics and Gynecology and Dermatovenerology 31, Krasnoarmeyskaya str., Petrozavodsk, 185001, Russia

T. Z Bagaudin

Petrozavodsk State University

Email: tavasik@rambler.ru
student, Medical Institute 31, Krasnoarmeyskaya str., Petrozavodsk, 185001, Russia

A. V Gusev

K-Sky LLC

Candidate of Engineering Sciences, ief Business Development 17, office 60/20, nab. Varkausa, Petrozavodsk, 185031, Russia

References

  1. Inhorn M.C., Patrizio P. Infertility around the globe: new thinking on gender, reproductive technologies and global movements in the 21st century. Hum. Reprod. 2015; 21(4): 411-26. https://dx.doi.org/10.1093/humupd/ dmv016.
  2. Masoumi S.Z., Parsa P, Darvish N., Mokhtari S., Yavangi M., Roshanaei G. An epidemiologic survey on the causes of infertility in patients referred to infertility center in Fatemieh Hospital in Hamadan. Iran. J. Reprod. Med. 2015; 13(8): 513-6.
  3. Wang J., Sauer M.V. In vitro fertilization (IVF): a review of 3 decades of clinical innovation and technological advancement. Ther. Clin. Risk Manag. 2006; 2(4): 355-64. https://dx.doi.org/10.2147/tcrm.2006.2.4.355.
  4. Greil A.L., Slauson-Blevins K., McQuillan J. The experience of infertility: a review of recent literature. Sociol. Health Illn. 2010; 32(1): 140-62. https:// dx.doi.org/10.1111/j.1467-9566.2009.01213.x.
  5. Ver Milyea M, Hall J.M.M., Diakiw S.M., Johnston A., Nguyen T., Perugini D. et al. Development of an artificial intelligence-based assessment model for prediction of embryo viability using static images captured by optical light microscopy during IVF. Hum. Reprod. 2020; 35(4): 770-84. https:// dx.doi.org/10.1093/humrep/deaa013.
  6. Steptoe P.C., Edwards R.G. Birth after the reimplantation of a human embryo. Lancet. 1978; 312(8085): 366. https://dx.doi.org/10.1016/ s0140-6736(78)92957-4.
  7. Wang R., Pan W., Jin L., Li Y., Geng J., Gao C. et al. Artificial intelligence in reproductive medicine. Reproduction. 2019; 158(4): 139-54. https:// dx.doi.org/10.1530/REP-18-0523.
  8. Saeedi P., Yee D., Au J., Havelock J. Automatic identification of human blastocyst components via texture. IEEE Trans. Biomed. Eng. 2017; 64(12): 2968-78. https://dx.doi.org/10.1109/TBME.2017.2759665.
  9. Patel V.L., Shortlife E.H., Stefanelli M., Szolovits P., Bert hold M.R., Bellazzi R., Abu-Hanna A. The coming of age of artificial intelligence in medicine. Artif. Intell. Med. 2009; 46(1): 5-17. https://dx.doi.org/10.1016/ j.artmed.2008.07.017.
  10. Ranjini K., Suruliandi A., Raja S.P Machine learning techniques for assisted reproductive technology: A review. J. Circuits Syst. Comput. 2019; 29(11): 2030010. https://dx.doi.org/10.1142/S021812662030010X.
  11. Camacho D.M., Collins K.M., Powers R.K., Costello J.C., Collins J.J. Next-generation machine learning for biological networks. Cell. 2018; 173: 1581-92. https://dx.doi.org/10.1016/j.cell.2018.05.015.
  12. Sidey-Gibbons J.A.M., Sidey-Gibbons C.J. Machine learning in medicine: a practical introduction. BMC Med. Res. Methodol. 2019; 19(1): 64. https:// dx.doi.org/10.1186/s12874-019-0681-4.
  13. Deo R.C. Machine learning in medicine. Circulation. 2015; 132(20): 1920-30. https://dx.doi.org/10.1161/CIRCULATIONAHA.115.001593.
  14. Carrasco B., Arroyo G., Gil Y., Gomez M.J., Rodriguez I., Barri P.N. et al. Selecting embryos with the highest implantation potential using data mining and decision tree based on classical embryo morphology and morphokinetics. J. Assist. Reprod. Genet. 2017; 34(8): 983-90. https://dx.doi.org/10.1007/ s10815-017-0955-x.
  15. Sahoo A.J., Kumar Y. Seminal quality prediction using data mining methods. Technol. Health Care. 2014; 22(4): 531-45. https://dx.doi.org/10.3233/ THC-140816.
  16. Liao S., Pan W., Dai W., Jin L., Huang G., Wang R. et al. Development of a dynamic diagnosis grading system for infertility using machine learning. JAMA Netw Open. 2020; 3(11): e2023654. https://dx.doi.org/10.1001/ jamanetworkopen.2020.23654.
  17. Hafiz P., Nematollahi M., Boostani R., Namavar Jahromi B. Predicting implantation outcome of in vitro fertilization and intracytoplasmic sperm injection using data mining techniques. Int. J. Fertil. Steril. 2017; 11(3): 184-90. https://dx.doi.org/10.22074/ijfs.2017.4882.
  18. Jakkula V. Tutorial on support vector machine (SVM). Sch EECS, Washington State Univ. 2006, Pullman 99164.
  19. Filho E.S., Noble J.A., Poll M., Griffiths T., Emerson G., Wells D. A method for semi-automatic grading of human blastocyst microscope images. Hum. Reprod. 2012; 27(9): 2641-8. https://dx.doi.org/10.1093/humrep/ des219.
  20. Mirsky S.K., Barnea I., Levi M., Greenspan H., Shaked N.T. Automated analysis of individual sperm cells using stain-free interferometric phase microscopy and machine learning. Cytometry A. 2017; 91(9): 893-900. https://dx.doi. org/10.1002/cyto.a.23189.
  21. Uyar A., Bener A., Ciray H.N. Predictive modeling of implantation outcome in an in vitro fertilization setting. Med. Decis. Making. 2014; 35(6): 714-25. https://dx.doi.org/10.1177/0272989X14535984.
  22. Morales D.A., Bengoetxea E., Larranaga P., Garcia M., Franco Y., Fresnada M. et al. Bayesian classification for the selection of in vitro human embryos using morphological and clinical data. Comput. Methods Programs Biomed. 2008; 90(2): 104-16. https://dx.doi.org/10.1016/ j.cmpb.2007.11.018.
  23. Jack V.T. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcome. J. Clin. Epidemiol. 1996; 49(11): 1225-31. https://dx.doi.o/10.1016/s0895-4356(96)00002-9.
  24. El-Shafeiy E., El-Desouky A., El-Ghamrawy S. An optimized artificial neural network approach based on sperm whale optimization algorithm for predicting fertility quality. Stud. Inform. Control. 2018; 27(3): 349-58.
  25. Hassan M.R., Al-Insaif S, Hossain M.I., Kamruzzaman J. A machine learning approach for prediction of pregnancy outcome following IVF treatment. Neural Comput. Applicat. 2020; 32(7): 2283-97. https://dx.doi.org/10.1093/humrep/ dez064.
  26. Chen T.J., Zheng W.L., Liu C.H., Huang I., Lai H.H., Liu M. Using deep learning with large dataset of microscope images to develop an automated embryo grading system. Fertil. Reprod. 2019; 1: 51-6.
  27. Khan A., Gould S, Salzmann M. Automated monitoring of human embryonic cells up to the 5-cell stage in time-lapse microscopy images. In: 12th International Symposium on Biomedical Imaging. IEEE. 2015: 389-93. https://dx.doi.org/10.1109/ISBI.2015.7163894.
  28. Khan A., Gould S, Salzmann M. Deep convolutional neural networks for human embryonic cell counting. In: ECCV: European Conference on Computer Vision. ECCV 2016: Computer Vision - ECCV 2016 Workshops. Proceedings, Part I. Amsterdam, The Netherlands, October 8-10 and 15-16, 2016.
  29. Miyagi Y., Habara T., Hirata R., Hayashi N. Feasibility of deep learning for predicting live birth from a blastocyst image in patients classified by age. Reprod. Med. Biol. 2019; 18(2): 190-203. https://dx.doi.org/10.1002/ rmb2.12266.
  30. Jenkins J., Van der Poel S., Krussel J., Bosch E., Nelson S.M., Pinborg A. et al. Empathetic application of machine learning may address appropriate utilization of ART. Reprod. Biomed. Online. 2020; 41(4): 573-7. https:// dx.doi.org/10.1016/j.rbmo.2020.07.005.
  31. Krittanawong C., Zhang H., Wang Z., Aydar M., Kitai T. Artificial intelligence in precision cardiovascular medicine. J. Am. Coll. Cardiol. 2017; 69(21): 2657-64. https://dx.doi.org/10.1016/j.jacc.2017.03.571.
  32. Keane P.A., Topol E.J. With an eye to AI and autonomous diagnosis. NPJ Digit. Med. 2018; 1: 40. https://dx.doi.org/10.1038/s41746-018-0048-y.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies