ROLE OF OXIDATIVE STRESS IN THE DEVELOPMENT OF GYNECOLOGICAL DISEASES


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Oxidative stress is an imbalance between the prooxidants and components of the antioxidant defense system, which causes changes in metabolism and energy balance in the body: the cells get damaged; pathological changes occur in human tissues and organs. The effect of prooxidants leads to oxidation of nucleic acids and to peroxidation of lipids, cell membrane shells, and protein structures. According to the modern concepts, carbonyl stress plays a major damaging role. The above changes contribute to the development of many diseases, for example, cardiovascular system diseases can affect the normal functioning of the brain and lead to various pregnancy complications, provoke and aggravate the course of different gynecological diseases. Despite the results of studies that indicate the role of various markers of oxidative stress in determining this pathological condition, specific indicators that could be used in routine practice have not been identified today. Antioxidant enzymes play a main role in antioxidant defense. However, to date, there is no clear opinion about the elimination of the consequences of oxidative stress. Numerous studies are being conducted to figure out the methods that might reduce the likelihood of developing this pathological process.

Full Text

Restricted Access

About the authors

Irina Yu. Ilyina

N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia

Email: iliyina@mail.ru
Dr. Med. Sci., professor 117513, Russia, Moscow, Ostrovitianov str., 1/9

Yuliya E. Dobrokhotova

N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia

Email: pr.dobrohotova@mail.ru
Dr. Med. Sci., professor 117513, Russia, Moscow, Ostrovitianov str., 1/9

References

  1. Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biol. 2015; 4: 180-3. https://dx.doi.org/10.1016/j.redox.2015.01.002.
  2. Черданцев Д.В., Николаева Л.П., Степаненко А.В., Дятлов В.Ю. Роль окислительного стресса в патогенезе сосудистых осложнений сахарного диабета. Международный журнал прикладных и фундаментальных исследований. 2010; 5: 127-30.
  3. Tenkorang M.A., Snyder B., Cunningham R.L. Sex-related differences in oxidative stress and neurodegeneration. Steroids. 2018; 133: 21-7. https://dx.doi. org/10.1016/j.steroids.2017.12.010.
  4. Куликов В.Ю. Роль окислительного стресса в регуляции метаболической активности внеклеточного матрикса соединительной ткани (обзор). Медицина и образование в Сибири. 2009; 4: 5.
  5. Цвиркун Д.В., Марей М.В., Вишнякова П.А., Пятаева С.В., Володина М.А., Тарасова Н.В., Рудимова Ю.В., Суханова Ю.А., Высоких М.Ю., Сухих Г.Т. Методы исследования окислительного стресса и митохондриальной дисфункции при акушерско-гинекологической патологии. Medica Mente. Лечим с умом. 2017; 3(2): 12-8
  6. Dutta E.H., Behnia F, Boldogh I., Saade G.R., Taylor B.D., Kacerovsky M. et al. Oxidative stress damage-associated molecular signaling pathways differentiate spontaneous preterm birth and preterm premature rupture of the membranes. Mol. Hum. Reprod. 2016; 22(2): 143-57. https://dx.doi.org/10.1093/molehr/ gav074.
  7. Ni H.M., Williams J.A., Ding W.X. Mitochondrial dynamics and mitochondrial quality control. Redox Biol. 2015; 4: 6-13. https://dx.doi.org/10.1016/j. redox.2014.11.006.
  8. Yoboue E.D., Devin A. Reactive oxygen species-mediated control of mitochondrial biogenesis. Int. J. Cell Biol. 2012; 2012: 403870. https://dx.doi. org/10.1155/2012/403870.
  9. Марсянова Ю.А. Особенности катаболизма эндогенных альдегидов при стрессе. Наука молодых (eruditiq juvenium). 2016; 1: 33-8.
  10. Давыдов В.В., Божков А.И., Кульчицкий О.К. Физиологическая и патофизиологическая роль эндогенных альдегидов. Saarbrucken: Palmarium academic publishing; 2012. 244 c.
  11. Магомедов М.М., Магомедов А.А. Роль окислительного стресса и матриксных металлопротеиназ в патогенезе трофических язв. Современные проблемы науки и образования. 2019; 1: 39.
  12. Senoner T., Dichtl W. Oxidative stress in cardiovascular diseases: still a therapeutic target? Nutrients. 2019; 11(9): 2090. https://dx.doi.org/10.3390/nu11092090.
  13. Liakopoulos V., Roumeliotis S., Gorny X., Dounousi E., Mertens P.R. Oxidative stress in hemodialysis patients: a review of the literature. Oxid. Med. Cell. Longev. 2017; 2017: 3081856. https://dx.doi.org/10.1155/2017/ 3081856.
  14. Cabello-Verrugio C., Simon F., Trollet C., Santibanez J.F. Oxidative stress in disease and aging: mechanisms and therapies 2016. Oxid. Med. Cell. Longev. 2017; 2017: 4310469. https://dx.doi.org/10.1155/2017/ 4310469.
  15. Kudryavtseva A.V., Krasnov G.S., Dmitriev A.A., Alekseev B.Y., Kardymon O.L., Sadritdinova A.F. et al. Mitochondrial dysfunction and oxidative stress in aging and cancer. Oncotarget. 2016; 7(29): 44879-905. https://dx.doi.org/10.18632/ oncotarget.9821.
  16. Chen Z., Zhong C. Oxidative stress in Alzheimer's disease. Neurosci. Bull. 2014; 30(2): 271-81. https://dx.doi.org/10.1007/s12264-013-1423-y.
  17. Borkum J.M. Migraine triggers and oxidative stress: a narrative review and synthesis. Headache. 2016; 56(1): 12-35. https://dx.doi.org/10.1111/ head.12725.
  18. Maggioni F., Maggioni G., Mainardi F. Migraine, triggers, and oxidative stress: be careful of the pharmacological anamnesis! Headache. 2016; 56(4): 782-3. https://dx.doi.org/10.1111/head.12809.
  19. Daenen K., Andries A., Mekahli D., Van Schepdael A., Jouret F., Bammens B. Oxidative stress in chronic kidney disease. Pediatr. Nephrol. 2019; 34(6): 97591. https://dx.doi.org/10.1007/s00467-018-4005-4.
  20. Poblete-Aro C., Russell-Guzmen J., Parra P., Soto-Munoz M., Villegas -Gonzalez B., Cofre-Bolados C. et al. Exercise and oxidative stress in type 2 diabetes mellitus. Rev. Med. Chil. 2018; 146(3): 362-72. https://dx.doi. org/10.4067/s0034-98872018000300362.
  21. Tan B.L., Norhaizan M.E., Liew W.P. Nutrients and oxidative stress: friend or foe? Oxid. Med. Cell. Longev. 2018; 2018: 9719584. https://dx.doi. org/10.1155/2018/9719584.
  22. Conti F.F., Brito Jde O., Bernardes N., Dias Dda S., Malfitano C., Morris M. et al. Positive effect of combined exercise training in a model of metabolic syndrome and menopause: autonomic, inflammatory, and oxidative stress evaluations. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015; 309(12): R1532-9. https:// dx.doi.org/10.1152/ajpregu.00076.2015.
  23. Hauck A.K., Huang Y., Hertzel A.V., Bernlohr D.A. Adipose oxidative stress and protein carbonylation. J. Biol. Chem. 2019; 294(4): 1083-8. https://dx.doi. org/10.1074/jbc.R118.003214.
  24. Conti F.F., Brito J. de O., Bernardes N., Dias D. da S., Sanches I.C., Malfitano C. et al. Cardiovascular autonomic dysfunction and oxidative stress induced by fructose overload in an experimental model of hypertension and menopause. BMC Cardiovasc. Disord. 2014; 14: 185. https://dx.doi.org/10.1186/1471-2261-14-185.
  25. Munoz A., Costa M. Nutritionally mediated oxidative stress and inflammation. Oxid. Med. Cell. Longev. 2013; 2013: 610950. https://dx.doi. org/10.1155/2013/610950.
  26. Akhter N., Madhoun A., Arefanian H., Wilson A., Kochumon S., Thomas R. et al. Oxidative stress induces expression of the Toll-Like Receptors (TLRs) 2 and 4 in the human peripheral blood mononuclear cells: implications for metabolic inflammation. Cell. Physiol. Biochem. 2019; 53(1): 1-18. https:// dx.doi.org/10.33594/000000117.
  27. Sindhu S., Akhter N., Kochumon S., Thomas R., Wilson A., Shenouda S. et al. Increased expression of the innate immune receptor TLR10 in obesity and type-2 diabetes: association with ROS-mediated oxidative stress. Cell. Physiol. Biochem. 2018; 45(2): 572-90. https://dx.doi.org/10.1159/000487034.
  28. Scutiero G., Iannone P., Bernardi G., Bonaccorsi G., Spadaro S., Volta C.A. et al. Oxidative stress and endometriosis: a systematic review of the literature. Oxid. Med. Cell. Longev. 2017; 2017: 7265238. https://dx.doi. org/10.1155/2017/7265238.
  29. Vitale S.G., Capriglione S., Peterlunger I., La Rosa V.L., Vitagliano A., Noventa M. et al. The role of oxidative stress and membrane transport systems during endometriosis: a fresh look at a busy corner. Oxid. Med. Cell. Longev. 2018; 2018: 7924021. https://dx.doi.org/10.1155/2018/7924021.
  30. Murakami K., Kotani Y., Nakai H., Matsumura N. Endometriosis-associated ovarian cancer: the origin and targeted therapy. Cancers (Basel). 2020; 12(6): 1676. https://dx.doi.org/10.3390/cancers12061676.
  31. Agarwal A., Gupta S., Sharma R.K. Role of oxidative stress in female reproduction. Reprod. Biol. Endocrinol. 2005; 3: 28. https://dx.doi.org/10.1186/ 1477-7827-3-28.
  32. Ховхаева П.А., Тютюнник Н.В., Красный А.М., Сергунина О.А., Тимофеева Л.А., Кан Н.Е., Тютюнник В.Л. Оксидативный стресс и экспрессия генов ферментов антиоксидантной защиты в плаценте при преэклампсии. Фарматека. 2016; 3: 74-6.
  33. Гагаева Ю.А., Вотинцева В.О., Журина И.Ю., Хамидова А.Р. Оценка состояния антиоксидантной системы защиты больных с трубно-перитонеальным бесплодием. Международная научная конференция, посвященная 85-летию Курского государственного медицинского университета. Курск, 2 февраля 2018 года. Университетская наука: взгляд в будущее. 2018: 403-5
  34. Mentese A., Guven S., Demir S., Sumer A., Yaman S.O., Alver A. et al. Circulating parameters of oxidative stress and hypoxia in normal pregnancy and HELLP syndrome. Adv. Clin. Exp. Med. 2018; 27(11): 1567-72. https://dx.doi. org/10.17219/acem/74653.
  35. Huang Y.Y., Wu C.H., Liu C.H., Yang S.F., WangP.H., Lin L.Y. et al. Association between the genetic variants of glutathione peroxidase 4 and severity of endometriosis. Int. J. Environ. Res. Public Health. 2020; 17(14): 5089. https:// dx.doi.org/10.3390/ijerph17145089.
  36. Ванько Л.В., Короткова Т.Д., Кречетова Л.В. Роль индуцируемого гипоксией фактора-1а и трансформирующего ростового фактора-в1 в развитии оксидативного и иммунного дисбаланса при эндометриозе. Акушерство и гинекология. 2019; 6: 14-22
  37. Donnez J., Binda M.M., Donnez O., Dolmans M.M. Oxidative stress in the pelvic cavity and its role in the pathogenesis of endometriosis. Fertil. Steril. 2016; 106(5): 1011-7. https://dx.doi.org/10.1016/j.fertnstert.2016.07.1075.
  38. Гречканев Г.О., Котова Т.В., Валентинова Н.Н., Мотовилова Т.М., Клементе Апумайта Х.М., Никишов Н.Н., Гагаева Ю.А., Кеда А.К., Курмангулова И.М., Гулян Ж.И., Кокова Р.Р., Хасянов И.М. Патогенетическая роль перекисного стресса в генезе пролапса тазовых органов у женщин. Вятский медицинский вестник. 2020; 1: 52-6.
  39. Sanchez-Rodriguez M.A., Zacarias-Flores M., Arronte-Rosales A., Mendoza-Nunez V.M. Association between hot flashes severity and oxidative stress among Mexican postmenopausal women: a cross-sectional study. PLoS One. 2019; 14(9): e0214264. https://dx.doi.org/10.1371/journal.pone.0214264.
  40. Романенко И.А., Полятыкина Т.С., Маврычева Н.В, Будникова Н.В., Гринштейн В.Б. Динамика метаболических показателей, маркеров окислительного стресса и повреждения сосудистой стенки при лечении больных ожирением с предиабетом. Клиническая медицина. 2016; 94(3): 221-4.
  41. Shimojo G.L., da Silva Dias D., Malfitano C., Sanches I.C., Llesuy S., Ulloa L. et al. Combined aerobic and resistance exercise training improve hypertension associated with menopause. Front. Physiol. 2018; 9: 1471. https://dx.doi. org/10.3389/fphys.2018.01471.
  42. Hqs М., Dziedzic K, Gorecka D., Jedrusek-Golinska A., Gujska E. Aloe vera (L.) Webb.: natural sources of antioxidants - a review. Plant Foods Hum. Nutr. 2019; 74(3): 255-65. https://dx.doi.org/10.1007/slll30-019-00747-5.
  43. Lloret A., Esteve D., Monllor P., Cervera-Ferri A., Lloret A. The effectiveness of vitamin E treatment in Alzheimer's disease. Int. J. Mol. Sci. 2019; 20(4): 879. https://dx.doi.org/10.3390/ijms20040879.
  44. Miyazawa Т., Burdeos G.C., Itaya М., Nakagawa K, Miyazawa T. Vitamin E: regulatory redox interactions. IUBMB Life. 2019; 71(4): 430-41. https://dx.doi. org/10.1002./iub.2008.
  45. Ford T.C., Downey L.A., Simpson Т., McPhee G., Oliver C., Stough C. The effect of a high-dose vitamin В multivitamin supplement on the relationship between brain metabolism and blood biomarkers of oxidative stress: a randomized control trial. Nutrients. 2018; 10(12): 1860. https://dx.doi.org/10.3390/nul0121860.
  46. Bizerea T.O., Dezjsi S.G., Marginean 0., Stroescu R., Rogobete A., Bizerea-Spiridon O. et al. The link between selenium, oxidative stress and pregnancy induced hypertensive disorders. Clin. Lab. 2018; 64(10): 1593-610. https:// dx.doi.org/10.7754/Clin. Lab. 2018.180307.
  47. Jamilian М., Mansury S., Bahmani E, Heidar Z., Amirani E., Asemi Z. The effects of probiotic and selenium co-supplementation on parameters of mental health, hormonal profiles, and biomarkers of inflammation and oxidative stress in women with polycystic ovary syndrome. J. Ovarian Res. 2018; 11(1): 80. https:// dx.doi.org/10.1186/sl3048-018-0457-1.
  48. Максимова М.Ю., Федорова Т.Н., Шарыпова Т.Н. Окислительный стресс и перспективы нейропротекции при хронических нарушениях мозгового кровообращения. Фарматека. 2015; 10: 63-9.
  49. Ostadmohammadi V., Jamilian M., Bahmani F., Asemi Z. Vitamin D and probiotic co-supplementation affects mental health, hormonal, inflammatory and oxidative stress parameters in women with polycystic ovary syndrome. J. Ovarian Res. 2019; 12(1): 5. https://dx.doi.org/10.1186/s13048-019-0480-x.
  50. Razavi M., Jamilian M., Fakhrieh Kashan Z., Heidar Z., Mohseni M., Ghandi Y. et al. Selenium supplementation and the effects on reproductive outcomes, biomarkers of inflammation, and oxidative stress in women with polycystic ovary syndrome. Horm. Metab. Res. 2016; 48(3): 185-90. https://dx.doi. org/10.1055/s-0035-1559604.
  51. Choi S., Liu X., Pan Z. Zinc deficiency and cellular oxidative stress: prognostic implications in cardiovascular diseases. Acta Pharmacol. Sin. 2018; 39(7): 1120 https://dx.doi.org/10.1038/aps.2018.25.
  52. Jarosz M., Olbert M., Wyszogrodzka G., Mkyniec K., Librowski T. Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-kB signaling. Inflammopharmacology. 2017; 25(1): 11-24. https://dx.doi.org/10.1007/ s10787-017-0309-4.
  53. Olechnowicz J., Tinkov A., Skalny A., Suliburska J. Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism. J. Physiol. Sci. 2018; 68(1): 19-31. https://dx.doi.org/10.1007/s12576-017-0571-7.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies