The follicular fluid metabolomic profile as a marker for oocyte quality in assisted reproductive technology programs


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

One of the leading factors in determining the success of assisted reproductive technologies is to obtain an embryo with a high implantation potential, which in turn depends more on the quality of gametes. The main criterion for assessing the quality of oocytes is their morphological characteristics. Recent studies are aimed at searching for more accurate and non-invasive markers that determine the egg ability to be fertilized and to subsequently develop to a normal embryo. Follicular fluid is a unique investigation object, as it carries information about the features of the metabolic activity of the oocyte, and hence its competence. A study of biological fluid metabolomes has become possible due to the technologies based on the use of mass spectrometry and nuclear magnetic resonance. This review presents studies that discuss whether the follicular fluid metabolomic profile can be investigated to assess the quality of an oocyte and the feasibility of using a number of metabolites as additional markers. It also gives the results of a number of studies of the complete metabolomic profile of follicular fluid from patients of different age groups and according to the values of anti-Mullerian hormone. There are data on the composition of follicular fluid in women with polycystic ovary syndrome and other metabolic disorders. The review describes the studies of follicular fluid metabolomes in patients with ovarian endometrioid cysts and in those with recurrent implantation failures. Conclusion: The results of the studies conducted have confirmed the prospects and relevance of further investigation of the follicular fluid metabolic profile, which may allow one to create predictive oocyte quality model in the future.

Full Text

Restricted Access

About the authors

A. A Gaponenko

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: sasha.gap@mail.ru

E. V Mityurina

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: mity-elena@yandex.ru

V. E Frankevich

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

References

  1. De Geyter C., Wyns C., Calhaz-Jorge C., de Mouzon J., Ferraretti A.P., Kupka M. et al. 20 years of the European IVF-monitoring Consortium registry: what have we learned? A comparison with registries from two other regions. Hum. Reprod. 2020; 35(12): 2832-49. https://dx.doi.org/10.1093/humrep/deaa250.
  2. Gleicher N., Kushnir V.A., Barad D.H. Worldwide decline of IVF birth rates and its probable causes. Hum. Reprod. Open. 2019; 2019(3): hoz017. https://dx.doi.org/10.1093/hropen/hoz017.
  3. Sirard M.A., Richard F., Blondin P., Robert C. Contribution of the oocyte to embryo quality. Theriogenology. 2006; 65(1): 126-36. https://dx.doi.org/10.1016/j.theriogenology.2005.09.020.
  4. De Sousa P.A., Caveney A., Westhusin M.E., Watson A.J. Temporal patterns of embryonic gene expression and their dependence on oogenetic factors. Theriogenology. 1998; 49(1): 115-28. https://dx.doi.org/10.1016/s0093-691x(97)00406-8.
  5. Patrizio P., Fragouli E., Bianchi V., Borini A., Wells D. Molecular methods for selection of the ideal oocyte. Reprod. Biomed. Online. 2007; 15(3): 346-53. https://dx.doi.org/10.1016/s1472-6483(10)60349-5.
  6. Dawson A., Griesinger G., Diedrich K. Screening oocytes by polar body biopsy. Reprod. Biomed. Online. 2006; 13(1): 104-9. https://dx.doi.org/10.1016/s1472-6483(10)62023-8.
  7. Moon J.H., Hyun C.S., Lee S.W., Son W.Y., Yoon S.H., Lim J.H. Visualization of the metaphase II meiotic spindle in living huma oocytes using the Polscope enables the prediction of embryonic developmental competence after ICSI. Hum. Reprod. 2003; 18(4): 817-20. https://dx.doi.org/10.1093/humrep/deg165.
  8. Santos T.A., El Shourbagy S., St John J.C. Mitochondrial content reflects oocyte variability and fertilization outcome. Fertil. Steril. 2006; 85(3): 584-91. https://dx.doi.org/10.1016/j.fertnstert.2005.09.017.
  9. Николенко И.Г., Смольникова В.Ю., Чаговец В.В. Возможности прогнозирования исходов программ вспомогательных репродуктивных технологий у пациенток с эндометриоидными кистами яичников на основании метаболомного профиля фолликулярной жидкости. Акушерство и гинекология. 2020; 11: 44-8. https://dx.doi.org/10.18565/aig.2020.11.44-48.
  10. Lei Z., Huhman D.V., Sumner L.W. Mass spectrometry strategies in metabolomics. J. Biol. Chem. 2011; 286(29): 25435-42. https://dx.doi.org/10.1074/jbc.R111.238691.
  11. Bracewell-Milnes T., Saso S., Abdalla H., Nikolau D., Norman-Taylor J., Johnson M. et al. Metabolomics as a tool to identify biomarkers to predict and improve outcomes in reproductive medicine: a systematic review. Hum. Reprod. Update. 2017; 23(6): 723-36. https://dx.doi.org/10.1093/humupd/dmx023.
  12. McRae C., Sharma V., Fisher J. Metabolite profiling in the pursuit of biomarkers for IVF outcome: the case for metabolomics studies. Int. J. Reprod. Med. 2013; 2013: 603167. https://dx.doi.org/10.1155/2013/603167.
  13. Wishart D.S. Metabolomics: the principles and potential applications to transplantation. Am. J. Transplant. 2005; 5(12): 2814-20. https://dx.doi.org/10.1111/j.1600-6143.2005.01119.x.
  14. Karaer A., Tuncay G., Mumcu A., Dogan B. Metabolomics analysis of follicular fluid in women with ovarian endometriosis undergoing in vitro fertilization. Syst. Biol. Reprod. Med. 2019; 65(1): 39-47. https://dx.doi.org/10.1080/19396368.2018.1478469.
  15. Revelli A., Delle Piane L., Casano S., Molinari E., Massobrio M., Rinaudo P. Follicular fluid content and oocyte quality: from single biochemical markers to metabolomics. Reprod. Biol. Endocrinol. 2009; 7 :40. https://dx.doi.org/10.1186/1477-7827-7-40.
  16. Botero-Ruiz W., Laufer N., DeCherney A.H., Polan M.L., Haseltine F.P., Behrman H.R. The relationship between follicular fluid steroid concentration and successful fertilization of human oocytes in vitro. Fertil. Steril. 1984; 41(6): 820-6. https://dx.doi.org/10.1016/s0015-0282(16)47892-1.
  17. Tarlatzis B.C., Laufer N., DeCherney A.H., Polan M.L., Haseltine F.P., Behrman H.R. Adenosine 3',5'-monophosphate levels in human follicular fluid: relationship to oocyte maturation and achievement of pregnancy after in vitro fertilization. J. Clin. Endocrinol. Metab. 1985; 60(6): 1111-5. https://dx.doi.org/10.1210/jcem-60-6-1111.
  18. Ben-Rafael Z., Meloni F., Strauss J.F. 3rd, Blasco L., Mastroianni L. Jr., Flickinger G.L. Relationships between polypronuclear fertilization and follicular fluid hormones in gonadotropin-treated women. Fertil. Steril. 1987; 47(2): 284-8. https://dx.doi.org/10.1016/s0015-0282(16)50007-7.
  19. Asimakopoulos B., Abu-Hassan D., Metzen E., Al-Hasani S., Diedrich K., Nikolettos N. The levels of steroid hormones and cytokines in individual follicles are not associated with the fertilization outcome after intracytoplasmic sperm injection. Fertil. Steril. 2008; 90(1): 60-4. https://dx.doi.org/10.1016/j.fertnstert.2007.05.054.
  20. Mendoza C., Ruiz-Requena E., Ortega E., Cremades N., Martinez F., Bernabeu R. et al. Follicular fluid markers of oocyte developmental potential. Hum. Reprod. 2002; 17(4): 1017-22. https://dx.doi.org/10.1093/humrep/17.4.1017.
  21. Lee M.S., Ben-Rafael Z., Meloni F., Mastroianni L. Jr., Flickinger G.L. Relationship of human oocyte maturity, fertilization, and cleavage to follicular fluid prolactin and steroids. J. In Vitro Fert. Embryo Transf. 1987; 4(3):168-72. https://dx.doi.org/10.1007/BF01555465.
  22. Reinthaller A., Deutinger J., Riss P., Muller-Tyl E., Fischl F., Bieglmayer C. et al. Relationship between the steroid and prolactin concentration in follicular fluid and the maturation and fertilization of human oocytes. J. In Vitro Fert. Embryo Transf. 1987; 4(4): 228-31. https://dx.doi.org/10.1007/BF01533761.
  23. Messinis I.E., Templeton A.A. Relationship between intrafollicular levels of prolactin and sex steroids and in-vitro fertilization of human oocytes. Hum. Reprod. 1987; 2(7): 607-9. https://dx.doi.org/10.1093/oxfordjournals.humrep.a136598.
  24. Oda T., Yoshimura Y., Izumi Y., Yoshimura S., Hara T., Takehara Y. et al. The effect of the follicular fluid adenosine 3',5'-monophosphate degradation rate on successful fertilization and cleavage of human oocytes. J. Clin. Endocrinol. Metab. 1990; 71(1): 116-21. https://dx.doi.org/10.1210/jcem-71-1-116.
  25. Rosenbusch B., Djalali M., Sterzik K. Is there any correlation between follicular fluid hormone concentrations, fertilizability, and cytogenetic analysis of human oocytes recovered for in vitro fertilization? Fertil. Steril. 1992; 57(6): 1358-60. https://dx.doi.org/10.1016/s0015-0282(16)55105-x.
  26. Wallace M., Cottell E., Gibney M.J., McAuliffe F.M., Wingfield M., Brennan L. An investigation into the relationship between the metabolic profile of follicular fluid, oocyte developmental potential, and implantation outcome. Fertil. Steril. 2012; 97(5): 1078-84.e1-8. https://dx.doi.org/10.1016/j.fertnstert.2012.01.122.
  27. Singh R., Sinclair K.D. Metabolomics: approaches to assessing oocyte and embryo quality. Theriogenology. 2007; 68(Suppl. 1): S56-62. https://dx.doi.org/10.1016/j.theriogenology.2007.04.007.
  28. Song J., Xiang S., Pang C., Guo J., Sun Z. Metabolomic alternations of follicular fluid of obese women undergoing in-vitro fertilization treatment. Sci. Rep. 2020; 10(1): 5968. https://dx.doi.org/10.1038/s41598-020-62975-z.
  29. Rice S., Christoforidis N., Gadd C., Nikolaou D., Seyani L., Donaldson A. et al. Impaired insulin-dependent glucose metabolism in granulosa-lutein cells from anovulatory women with polycystic ovaries. Hum. Reprod. 2005; 20(2): 373-81. https://dx.doi.org/10.1093/humrep/deh609.
  30. Cordeiro F.B., Cataldi T.R., da Costa L., de Souza B.Z., Montani D.A. et al. Metabolomic profiling in follicular fluid of patients with infertility-related deep endometriosis. Metabolomics. 2017; 13: 120. https://dx.doi.org/10.1007/s11306-017-1262-3.
  31. Hulas-Stasiak M., Gawron A. Follicular atresia in the prepubertal spiny mouse (Acomys cahirinus) ovary. Apoptosis. 2011; 16(10): 967-75. https://dx.doi.org/10.1007/s10495-011-0626-9.
  32. Zhang X., Wang T., Song J., Deng J., Sun Z. Study on follicular fluid metabolomics components at different ages based on lipid metabolism. Reprod. Biol. Endocrinol. 2020; 18(1): 42. https://dx.doi.org/10.1186/s12958-020-00599-8.
  33. Montani D.A., Braga D.P.A.F., Borges E. Jr., Camargo M., Cordeiro F.B., Pilau E.J. et al. Understanding mechanisms of oocyte development by follicular fluid lipidomics. J. Assist. Reprod. Genet. 2019; 36(5): 1003-11. https://dx.doi.org/10.1007/s10815-019-01428-7.
  34. Dogan B., Karaer A., Tuncay G., Tecellioglu N., Mumcu A. High-resolution 1H-NMR spectroscopy indicates variations in metabolomics profile of follicular fluid from women with advanced maternal age. J. Assist. Reprod. Genet. 2020; 37(2): 321-30. https://dx.doi.org/10.1007/s10815-020-01693-x.
  35. Pacella L., Zander-Fox D.L., Armstrong D.T., Lane M. Women with reduced ovarian reserve or advanced maternal age have an altered follicular environment. Fertil. Steril. 2012; 98(4): 986-94.e1-2. https://dx.doi.org/10.1016/j.fertnstert.2012.06.025.
  36. de la Barca J.M.C., Boueilh T., Simard G., Boucret L., Ferre-L'Hotellier V., Tessier L. et al. Targeted metabolomics reveals reduced levels of polyunsaturated choline plasmalogens and a smaller dimethylarginine/arginine ratio in the follicular fluid of patients with a diminished ovarian reserve. Hum. Reprod. 2017; 32(11): 2269-78. https://dx.doi.org/10.1093/humrep/dex303.
  37. Maeba R., Maeda T., Kinoshita M., Takao K., Takenaka H., Kusano J. et al. Plasmalogens in human serum positively correlate with high-density lipoprotein and decrease with aging. J. Atheroscler. Thromb. 2007; 14(1): 12-8. https://dx.doi.org/10.5551/jat.14.12.
  38. Bedaiwy M.A., Elnashar S.A., Goldberg J.M., Sharma R., Mascha E.J., Arrigain S. et al. Effect of follicular fluid oxidative stress parameters on intracytoplasmic sperm injection outcome. Gynecol. Endocrinol. 2012; 28(1): 51-5. https://dx.doi.org/10.3109/09513590.2011.579652.
  39. de los Santos M.J., Garcia-Laez V., Beltran-Torregrosa D., Horcajadas J.A., Martinez- Conejero J.A., Esteban F.J. et al. Hormonal and molecular characterization of follicular fluid, cumulus cells and oocytes from preovulatory follicles in stimulated and unstimulated cycles. Hum. Reprod. 2012; 27(6): 1596-605. https://dx.doi.org/10.1093/humrep/des082.
  40. Enien W.M., el Sahwy S., Harris C.P., Seif M.W., Elstein M. Human chorionic gonadotrophin and steroid concentrations in follicular fluid: the relationship to oocyte maturity and fertilization rates in stimulated and natural in vitro fertilization cycles. Hum. Reprod. 1995; 10(11): 2840-4. https://dx.doi.org/10.1093/oxfordjournals.humrep.a135804.
  41. Xia L., Zhao X., Sun Y., Hong Y., Gao Y., Hu S. Metabolomic profiling of human follicular fluid from patients with repeated failure of in vitro fertilization using gas chromatography/mass spectrometry. Int. J. Clin. Exp. Pathol. 2014; 7(10): 7220-9.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies