Molecular markers for endometrial receptivity in assisted reproductive technology programs


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Despite the increasing effectiveness of assisted reproductive technology (ART) programs, the frequency of successful embryo implantations remains low. The lack of implantation may be associated with impaired endometrial receptivity during the implantation window. To determine the receptivity of the endometrium, various diagnostic methods, such as histological analysis, electron microscopy, immunohistochemical examination, and molecular genetic analysis, have been developed and used; however, many of them depend on contributing factors and are of ow functional significance in solving this problem. The search for an ideal marker is now ongoing to determine the best moment for embryo transfer into the uterine cavity for an in vitro fertilization (IVF) cycle. The use of omix technologies to study the embryo culture medium could predict not only the quality, but also implantation potential of the embryo itself, as well as optimize the selection of embryos for transfer to the uterine cavity. However, to enhance the effectiveness of ART programs, it is advisable not only to study the embryonic profile, but also to assess endometrial receptivity. Conclusion: In this connection, analyzing the literature sources has shown that the study of the small non-coding RNA (sncRNA) in the endometrial samples is a promising and relevant analysis that will be able to personalize the approach to implementing ART programs.

Full Text

Restricted Access

About the authors

Yael A. Gokhberg

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: dr.yaelgokhberg@gmail.com
postgraduate student at the BV. Leonov Department of Assisted Technologies for the Treatment of Infertility

Angelika V. Timofeeva

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: avtimofeeva28@gmail.com
MD., Ph.D., Head of Laboratory of applied transcriptomics

Elena A. Kalinina

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: e_kalinina@oparina4.ru
Dr. Med. Sci., Professor, Head of the BV. Leonov Department of Assisted Technologies for the Treatment of Infertility

References

  1. Корсак В.С., Смирнова А.А., Шурыгина О.В. Регистр ВРТ Российской ассоциации репродукции человека. Отчет за 2017 год. Проблемы репродукции. 2019; 25(6): 9-21. [Korsak V.S., Smirnova A.A., Shurygina O.V. Register of ART of the Russian Association of Human Reproduction. Report for 2017. Problems of reproduction. 2019; 25(6): 9-21. (in Russian)]. https://doi.org/10.17116/repro2019250619.
  2. Gleicher N., Kushnir V.A., Barad D.H. Worldwide decline of IVF birth rates and its probable causes. Hum. Reprod. Open. 2019; 2019(3): hoz017. https://dx.doi.org/10.1093/hropen/hoz017.
  3. Wang L., Lv S., Mao W., Pei M., Yang X. Assessment of endometrial receptivity during implantation window in women with unexplained infertility. Gynecol. Endocrinol. 2020; 36(10): 917-21.https://dx.doi.org/10.1080/09513590.2020.1727433.
  4. Massimiani M., Lacconi V., La Civita F., Ticconi C., Rago R., Campagnolo L. Molecular signaling regulating endometrium-blastocyst crosstalk. Int. J. Mol. Sci. 2019; 21(1): 23. https://dx.doi.org/10.3390/ijms21010023.
  5. Lessey B.A., Young S.L. What exactly is endometrial receptivity? Fertil. Steril. 2019; 111(4): 611-7. https://dx.doi.org/10.10167j.fertnstert.2019.02.009.
  6. Kelleher A.M., DeMayo FJ, Spencer T.E. Uterine glands: developmental biology and functional roles in pregnancy. Endocr. Rev. 2019; 40(5): 1424-45. https://dx.doi.org/10.1210/er.2018-00281.
  7. Gnainsky Y., Granot I., Aldo P., Barash A., Or Y., Mor G. et al. Biopsy-induced inflammatory conditions improve endometrial receptivity: the mechanism of action. Reproduction. 2015; 149(1): 75-85. https://dx.doi.org/10.1530/ REP-14-0395.
  8. Melkozerova O.A., Bashmakova N.V., Malgina G.B., Bragina E.E., Michelson A.A., Chistyakova G.N. Ultrastructural markers of tissue endometrial receptivity in patients with recurrent implantation failure. Gynecol. Endocrinol. 2019; 35(Suppl. 1): 45-8. https://dx.doi.org/10.1080/09513590.2019.1653562.
  9. Гохберг Я.А., Макарова Н.П., Бабаян А.А., Калинина Е.А. Роль различных факторов воздействия на эндометрий в повышении эффективности программ вспомогательных репродуктивных технологий. Акушерство и гинекология. 2021; 1: 28-34. [Gokhberg Ya.A., Makarova N.P., Babayan A.A., Kalinina E.A. The role of various factors affecting the endometrium in enhancing the effectiveness of assisted reproductive technology programs. Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2021; 1: 28-34 (in Russian)]. https://dx.doi.org/10.18565/aig.2021.1.28-34.
  10. Kele§ I.D., Ulgen E., Erkan M.B., Qelik S.E., Ay din Y., Onem A.N. et al. Comparison of endometrial prostanoid profiles in three infertile subgroups: the missing part of receptivity? Fertil. Steril. 2020; 113(3): 670-8.e1. https://dx.doi.org/10.1016/j.fertnstert.2019.10.017.
  11. Кибанов М.В., Махмудова Г.М., Гохберг Я.А. Поиск идеального маркера для оценки рецептивности эндометрия: от гистологии до современных молекулярно-генетических подходов. Альманах клинической медицины. 2019; 47(1): 12-25. [Kibanov M.V., Makhmudova G.M., Gokhberg Ya.A. In search for an ideal marker of endometrial receptivity: from histology to comprehensive molecular genetics-based approaches. Almanac of Clinical Medicine. 2019; 47(1): 12-25. (in Russian)]. https://doi.org/10.18786/2072-0505-2019-47-005.
  12. Timofeeva A.V., Chagovets V.V., Drapkina Y.S., Makarova N.P., Kalinina E.A., Sukhikh G.T. Cell-free, embryo-specific sncRNA as a molecular biological bridge between patient fertility and IVF efficiency. Int. J. Mol. Sci. 2019; 20(12): 2912. https://dx.doi.org/10.3390/ijms20122912.
  13. Zmuidinaite R., Sharara F.I., Iles R.K. Current advancements in noninvasive profiling of the embryo culture media secretome. Int. J. Mol. Sci. 2021; 22(5): 2513. https://dx.doi.org/10.3390/ijms22052513.
  14. Capra E., Lange-Consiglio A. The biological function of extracellular vesicles during fertilization, early embryo-maternal crosstalk and their involvement in reproduction: review and overview. Biomolecules. 2020; 10(11): 1510. https://dx.doi.org/10.3390/biom10111510.
  15. Haraszti R.A., Didiot M.C., Sapp E., Leszyk J., Shaffer S.A., Rockwell H.E. et al. High-resolution proteomic and lipidomic analysis of exosomes and microvesicles from different cell sources. J. Extracell. Vesicles. 2016; 5: 32570. https://dx.doi.org/10.3402/jev.v5.32570.
  16. Haouzi D., Entezami F., Torre A., Innocenti C., Antoine Y., Mauries C. et al. Customized frozen embryo transfer after identification of the receptivity window with a transcriptomic approach improves the implantation and live birth rates in patients with repeated implantation failure. Reprod. Sci. 2021; 28(1): 69-78. https://dx.doi.org/10.1007/s43032-020-00252-0.
  17. Salas-Huetos A., James E.R., Aston K.I., Carrell D.T., Jenkins T.G., Yeste M. The role of miRNAs in male human reproduction: a systematic review. Andrology. 2020; 8(1): 7-26. https://dx.doi.org/10.1111/andr.12714.
  18. Treiber T., Treiber N., Meister G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat. Rev. Mol. Cell Biol. 2019; 20(1): 5-20. https://dx.doi/10.1038/s41580-018-0059-1.
  19. Ha M., Kim V.N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 2014; 15(8): 509-24. https://dx.doi.org/10.1038/nrm3838.
  20. Iwasaki Y.W., Siomi M.C., Siomi H. PIWI-interacting RNA: its biogenesis and functions. Annu. Rev. Biochem. 2015; 84: 405-33. https://dx.doi.org/10.1146/annurev-biochem-060614-034258.
  21. Hirakata S., Siomi M.C. PiRNA biogenesis in the germline: from transcription of piRNA genomic sources to piRNA maturation. Biochim. Biophys. Acta. 2016; 1859(1): 82-92. https://dx.doi.org/10.1016/j.bbagrm.2015.09.002.
  22. Guo X., Li T.C., Chen X. The endometrial proteomic profile around the time of embryo implantation. Biol. Reprod. 2021; 104(1): 11-26. https://dx.doi.org/10.1093/biolre/ioaa150.
  23. Hua R., Wang Y., Lian W. Li W. Xi Y., Xue S. et al. Small RNA-seq analysis of extracellular vesicles from porcine uterine flushing fluids during peri-implantation. Gene. 2021; 766: 145117. https://dx.doi.org/10.1016/j.gene.2020.145117.
  24. Homer H., Rice G.E., Salomon C. Review: embryo- and endometrium-derived exosomes and their potential role in assisted reproductive treatments-liquid biopsies for endometrial receptivity. Placenta. 2017; 54: 89-94. https://dx.doi.org/10.1016/j.placenta.2016.12.011.
  25. Shi C., Shen H., Fan L.J., Guan J., Zheng X.B., Chen X. et al. Endometrial microRNA signature during the window of implantation changed in patients with repeated implantation failure. Chin. Med. J. (Engl). 2017; 130(5): 566-73. https://dx.doi.org/10.4103/0366-6999.200550.
  26. Franasiak J.M., Forman E.J., Hong K.H., Werner M.D., Upham K.M., Treff N.R. et al. The nature of aneuploidy with increasing age of the female partner: a review of 15,169 consecutive trophectoderm biopsies evaluated with comprehensive chromosomal screening. Fertil. Steril. 2014; 101(3): 656-63.e1. https://dx.doi.org/10.1016/j.fertnstert.2013.11.004.
  27. Rosenbluth E.M., Shelton D.N., Wells L.M., Sparks A.E., Van Voorhis B.J. Human embryos secrete microRNAs into culture media - a potential biomarker for implantation. Fertil. Steril. 2014; 101(5): 1493-500. https://dx.doi.org/10.1016/j.fertnstert.2014.01.058.
  28. Cuman C., Van Sinderen M., Gantier M.P., Rainczuk K., Sorby K., Rombauts L. et al. Human blastocyst secreted microRNA regulate endometrial epithelial cell adhesion. EBioMedicine. 2015; 2(10): 1528-35. https://dx.doi.org/10.1016/j.ebiom.2015.09.003.
  29. Borges E. Jr., Setti A.S., Braga D.P., Geraldo M.V., Figueira R.C., Iaconelli A. Jr. MiR-142-3p as a biomarker of blastocyst implantation failure - a pilot study. JBRA Assist. Reprod. 2016; 20(4): 200-5. https://dx.doi.org/10.5935/1518-0557.20160039.
  30. Timofeeva A., Drapkina Y., Fedorov I., Chagovets V., Makarova N., Shamina M. et al. Small noncoding RNA signatures for determining the developmental potential of an embryo at the morula stage. Int. J. Mol. Sci. 2020; 21(24): 9399. https://dx.doi.org/10.3390/ijms21249399.
  31. Драпкина Ю.С., Тимофеева А.В., Чаговец В.В., Кононихин А. С., Франкевич В.Е., Калинина Е.А. Применение омиксных технологий в решении проблем репродуктивной медицины. Акушерство и гинекология. 2018; 9: 24-32. https://dx.doi.org/10.18565/aig.2018.9.24-32.
  32. Vilella F., Moreno-Moya J.M., Balaguer N., Grasso A., Herrero M., Martinez S. et al. Hsa-miR-30d, secreted by the human endometrium, is taken up by the pre-implantation embryo and might modify its transcriptome. Development. 2015; 142(18): 3210-21. https://dx.doi.org/10.1242/dev.124289.
  33. Ferlita A., Battaglia R., Andronico F., Caruso S., Cianci A., Purrello M. et al. Noncoding RNAs in endometrial physiopathology. Int. J. Mol. Sci. 2018; 19(7): 2120. https://dx.doi.org/10.3390/ijms19072120.
  34. Inyawilert W., Fu T.Y., Lin C.T., Tang P.C. MicroRNA-199a mediates mucin 1 expression in mouse uterus during implantation. Reprod. Fertil. Dev. 2014; 26(5): 653-64. https://dx.doi.org/10.1071/RD12097.
  35. Liang J., Cao D., Zhang X., Liu L., Tan Q., Shi S. et al. MiR-192-5p suppresses uterine receptivity formation through impeding epithelial transformation during embryo implantation. Theriogenology. 2020; 157: 360-71. https://dx.doi.org/10.1016/j.theriogenology.2020.08.009.
  36. Kang Y.J., Lees M., Matthews L.C., Kimber S.J., Forbes K., Aplin J.D. MiR-145 suppresses embryo-epithelial juxtacrine communication at implantation by modulating maternal IGF1R. J. Cell Sci. 2015; 128(4): 804-14. https://dx.doi.org/10.1242/jcs.164004.
  37. Tochigi H., Kajihara T., Mizuno Y., Mizuno Y., Tamaru S., Kamei Y. et al. Loss of miR-542-3p enhances IGFBP-1 expression in decidualizing human endometrial stromal cells. Sci. Rep. 2017; 7: 40001. https://dx.doi.org/10.1038/srep40001.
  38. Sultana S., Kajihara T., Mizuno Y., Sato T., Oguro T., Kimura M. et al. Overexpression of microRNA-542-3p attenuates the differentiating capacity of endometriotic stromal cells. Reprod. Med. Biol. 2017; 16(2): 170-8. https://dx.doi.org/10.1002/rmb2.12028.
  39. Kimura M., Kajihara T., Mizuno Y., Sato T., Ishihara O. Loss of high-mobility group N5 contributes to the promotion of human endometrial stromal cell decidualization. Reprod. Med. Biol. 2018; 17(4): 493-9. https://dx.doi.org/10.1002/rmb2.12226.
  40. Wang Y., Qin C., Witarsa F. Clarifying configurations of reaction rate constant for first-order and Monod-type kinetics: a comparative manner and a pursuit of parametric definition. Waste Manag. 2018; 77: 22-9. https://dx.doi.org/10.1016/j.wasman.2018.04.040.
  41. Cui J., Liu X., Yang L., Che S., Guo H., Han J. et al. MiR-184 combined with STC2 promotes endometrial epithelial cell apoptosis in dairy goats via RAS/RAF/MEK/ERK pathway. Genes (Basel). 2020; 11(9): 1052. https://dx.doi.org/10.3390/genes11091052.
  42. Zhang L., Liu X., Liu J., Ma X., Zhou Z., Song Y. et al. MiR-26a promoted endometrial epithelium cells (EECs) proliferation and induced stromal cells (ESCs) apoptosis via the PTEN-PI3K/AKT pathway in dairy goats. J. Cell. Physiol. 2018; 233(6): 4688-4706. https://dx.doi.org/10.1002/jcp.26252.
  43. Коган Е.А., Калинина Е.А., Колотовкина А.В., Файзуллина Н.М.,Адамян Л.В. Морфологический и молекулярный субстрат нарушения рецептивности эндометрия у бесплодных пациенток с наружно-генитальным эндометриозом. Акушерство и гинекология. 2014; 8: 47-52.
  44. Dong X., Sui C., Huang K., Wang L., Hu D., Xiong T. et al. MicroRNA-223-3p suppresses leukemia inhibitory factor expression and pinopodes formation during embryo implantation in mice. Am. J. Transl. Res. 2016; 8(2): 1155-63.
  45. Chen C., Zhao Y., Yu Y., Li R., Qiao J. MiR-125b regulates endometrial receptivity by targeting MMP26 in women undergoing IVF-ET with elevated progesterone on HCG priming day. Sci. Rep. 2016; 6: 25302. https://dx.doi.org/10.1038/srep25302.
  46. Salmasi S., Sharifi M., Rashidi B. Evaluating the effect of ovarian stimulation and exogenous progesterone on CD31-positive cell density, VEGF protein, and miR-17-5p expression of endometrium immediately before implantation. Biomed. Pharmacother. 2021; 133: 110922. https://dx.doi.org/10.1016/j.biopha.2020.110922.
  47. Akbar R., Ullah K., Rahman T.U., Cheng Y., Pang H.Y., Jin L.Y. et al. MiR-183-5p regulates uterine receptivity and enhances embryo implantation. J. Mol. Endocrinol. 2020; 64(1): 43-52. https://dx.doi.org/10.1530/ JME-19-0184.
  48. Riyanti A., Febri R.R., Zakirah S.C., Harzif A.K., Rajuddin R., Muharam R. et al. Suppressing HOXA-10 gene expression by microRNA 135b during the window of implantation in infertile women. J. Reprod. Infertil. 2020; 21(3): 217-21.
  49. Tan J., Kan A., Hitkari J., Taylor B., Tallon N., Warraich G. et al. The role of the endometrial receptivity array (ERA) in patients who have failed euploid embryo transfers. J. Assist. Reprod. Genet. 2018; 35(4): 683-92. https://dx.doi.org/10.1007/s10815-017-1112-2.
  50. Eisman L.E., Pisarska M.D., Wertheimer S., Chan J.L., Akopians A.L., Surrey M. W. et al. Clinical utility of the endometrial receptivity analysis in women with prior failed transfers. J. Assist. Reprod. Genet. 2021; 38(3): 645-50. https://dx.doi.org/10.1007/s10815-020-02041-9.
  51. Hashimoto T., Koizumi M., Doshida M., Toya M., Sagara E., Oka N. et al. Efficacy of the endometrial receptivity array for repeated implantation failure in Japan: a retrospective, two-centers study. Reprod. Med. Biol. 2017; 16(3): 290-6. https://dx.doi.org/10.1002/rmb2.12041.
  52. Patel J.A., Patel A.J., Banker J.M., Shah S.I., Banker M.R. Personalized embryo transfer helps in improving In vitro fertilization/ICSI outcomes in patients with recurrent implantation failure. J. Hum. Reprod. Sci. 2019; 12(1): 59-66. https://dx.doi.org/10.4103/jhrs.JHRS_74_18.
  53. Li T., Greenblatt E.M., Shin M.E., Brown T.J., Chan C. Cargo small noncoding RNAs of extracellular vesicles isolated from uterine fluid associate with endometrial receptivity and implantation success. Fertil. Steril. 2021; 115(5): 1327-36. https://dx.doi.org/10.1016/j.fertnstert.2020.10.046.
  54. Grasso A., Navarro R., Balaguer N., Moreno I., Alama P., Jimenez J. et al. Endometrial liquid biopsy provides a miRNA roadmap of the secretory phase of the human endometrium. J. Clin. Endocrinol. Metab. 2020; 105(3): dgz146. https://dx.doi.org/10.1210/clinem/dgz146.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies