Chloramphenicol: new possibilities of the old drug


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

One of the central problems of pharmacotherapy for infectious diseases is the active rise of antibiotic resistance to the most commonly used drugs, which leads to a shortage of effective patient management strategies. A possible alternative in this situation can be an evaluation of the modern abilities of antibacterial drugs, the use of which in clinical practice has been minimized over the past decades. An example of such a drug is chloramphenicol, the systemic application of which has been sharply limited since the 1960s because of reports on toxic reactions (aplastic anemia, gray baby syndrome). Topical chloramphenicol is characterized by the low level of systemic absorption and by the absence of its ability to cause a range of side effects typical for systemic use. The high antibacterial activity of chloramphenicol against a wide range of gram-negative and gram-positive pathogens (Morganella morganii, Empedobacter brevis, Burkholderia cepacia, Bacteroides spp., H. influenzae, Salmonella typhi, Staphylococcus aureus (including MRSA), Streptococcus pneumonia, Streptococcus pyogenes, Gardnerella vaginalis, Mycoplasma pneumoniae, Mycoplasma hominis, and Ureaplasma spр.), including resistant strains, allows its use in a variety of infectious diseases. The mechanism of action and structure of the drug, which distinguish it from other classes of antibacterial agents, make it possible to produce an effective effect, including on pathogens that do not contain penicillin-binding proteins (mycoplasma) in the cell wall. According to the published data, a comparative analysis of the safety profile of systematically used chloramphenicol has revealed no signif icant differences in that of representatives of other groups of antibacterial drugs, with the exception of anemia cases. The studies on the application of topical chloramphenicol in pregnant women have not revealed its teratogenic potential of the drug when used during 2-3 months of pregnancy. Conclusion: The pooled data suggesting that chloramphenicol has high activity against a broad range of pathogens, therapeutic efficacy, and a satisfactory safety profile when applied topically in various fields (clinical studies in ophthalmology and gynecology) indicates that its intravaginal formulation can be used to treat bacterial vaginosis.

Full Text

Restricted Access

About the authors

Sergey K. Zyryanov

Peoples' Friendship University of Russia (RUDN University); City Clinical Hospital No. 24, Moscow Healthcare Department

Dr. Med. Sci., Professor, Head of the Department of General and Clinical Pharmacology

Olga I. Butranova

Peoples' Friendship University of Russia (RUDN University)

Email: butranova-oi@rudn.ru
PhD, Associate Professor of the Department of General and Clinical Pharmacology of the Medical Institute

Mikhail S. Chenkurov

Peoples' Friendship University of Russia (RUDN University)

Email: mishach06@hotmail.com
graduate student of the Department of General and Clinical Pharmacology of the Medical Institute

References

  1. Robertson J., Vlahovic-Palcevski V., Iwamoto K., Hogberg L.D., Godman B., Monnet D.L. et al. Variations in the consumption of antimicrobial medicines in the European Region, 2014-2018: findings and implications from ESAC-Net and WHO Europe. Front. Pharmacol. 2021; 12: 639207. https://dx.doi.org/10.3389/fphar.2021.639207
  2. Klein E.Y., Milkowska-Shibata M., Tseng K.K., Sharland M., Gandra S., Pulcini C., Laxminarayan R. Assessment of WHO antibiotic consumption and access targets in 76 countries, 2000-15: an analysis of pharmaceutical sales data. Lancet Infect. Dis. 2021; 21(1): 107-15. https://dx.doi.org/10.1016/S1473-3099(20)30332-7.
  3. Langford B.J., So M., Raybardhan S., Leung V., Soucy J.R., Westwood D. et al. Antibiotic prescribing in patients with COVID-19: rapid review and meta-analysis. Clin. Microbiol. Infect. 2021; 27(4): 520-31. https://dx.doi.org/10.1016/j.cmi.2020.12.018.
  4. Al-Azzam S., Mhaidat N.M., Banat H.A., Alfaour M., Ahmad D.S., Muller A. et al. An assessment of the impact of coronavirus disease (COVID-19) pandemic on national antimicrobial consumption in Jordan. Antibiotics (Basel). 2021; 10(6): 690. https://dx.doi.org/10.3390/antibiotics10060690.
  5. Andrei S., Droc G., Stefan G. FDA approved antibacterial drugs: 2018-2019. Discoveries (Craiova). 2019; 7(4): e102. https://dx.doi.org/10.15190/d.2019.15.
  6. Kostopoulou O.N., Magoulas G.E., Papadopoulos G.E., Mouzaki A., Dinos G.P., Papaioannou D., Kalpaxis D.L. Synthesis and evaluation of chloramphenicol homodimers: molecular target, antimicrobial activity, and toxicity against human cells. PLoS One. 2015; 10(8): e0134526. https://dx.doi.org/10.1371/journal.pone.0134526
  7. Aronoff D.M. Mildred rebstock: profile of the medicinal chemist who synthesized chloramphenicol. Antimicrob. Agents Chemother. 2019; 63(6): e00648-19. https://dx.doi.org/10.1128/AAC.00648-19.
  8. https://pubmed.ncbi.nlm.nih.gov/?term=%22Chloramphenicol%2Ftherapeutic%20use%22%5BMAJR%5D&timeline=expanded
  9. Nitzan O., Kennes Y., Colodner R., Saliba W., EdelsteinI H., Raz R., Chazan B. Chloramphenicol use and susceptibility patterns in Israel: a national survey. Isr. Med. Assoc. J. 2015; 17(1): 27-31.
  10. Morgan-Warren P.J., Morarji J.B. Trends in licence approvals for ophthalmic medicines in the United Kingdom. Eye (London). 2020; 34(10): 1856-65. https://dx.doi.org/10.1038/s41433-019-0758-7.
  11. Du H.C., John D.N., Walker R. An investigation of prescription and over-the-counter supply of ophthalmic chloramphenicol in Wales in the 5 years following reclassification. Int. J. Pharm. Pract. 2014; 22(1): 20-7. https://dx.doi.org/10.1111/ijpp.12033.
  12. Giarusso A. Indications for chloramphenicol in gynecology. Minerva Ginecol. 1952; 4(14): 90-1.
  13. Costa J.E., Guglielmone P.L. Chloramphenicol; its vaginal use in gynecological infections. Obstet. Ginecol. Lat. Am. 1954; 12(11-12): 565-70. (Spanish)
  14. Antonelli A. Chloramphenicol & tetracycline in gynecological infections. Dia Med. 1959; 31(19): 488-9. (Spanish).
  15. Schuppius A. Chloramphenicol therapy in gynecology. Ther. Ggw. 1958; 97(11): 445-7. (German).
  16. Dinos G.P., Athanassopoulos C.M., Missiri D.A., Giannopoulou P.C., Vlachogiannis I.A., Papadopoulos G.E. et al. Chloramphenicol derivatives as antibacterial and anticancer agents: historic problems and current solutions. Antibiotics (Basel). 2016; 5(2): 20. https://dx.doi.org/10.3390/antibiotics5020020.
  17. Polacek N., Gomez M.J., Ito K., Xiong L., Nakamura Y., Mankin A. The critical role of the universally conserved A2602 of 23S ribosomal RNA in the release of the nascent peptide during translation termination. Mol. Cell. 2003; 11(1): 103-12. https://dx.doi.org/10.1016/s1097-2765(02)00825-0.
  18. Thompson J., O'Connor M., Mills J.A., Dahlberg A.E. The protein synthesis inhibitors, oxazolidinones and chloramphenicol, cause extensive translational inaccuracy in vivo. J. Mol. Biol. 2002; 322(2): 273-9. https://dx.doi.org/10.1016/s0022-2836(02)00784-2.
  19. Champney W.S. The other target for ribosomal antibiotics: inhibition of bacterial ribosomal subunit formation. Infect. Disord. Drug Targets. 2006; 6(4): 377-90. https://dx.doi.org/10.2174/187152606779025842.
  20. Siibak T., Peil L., Xiong L., Mankin A., Remme J., Tenson T. Erythromycin- and chloramphenicol-induced ribosomal assembly defects are secondary effects of protein synthesis inhibition. Antimicrob. Agents Chemother. 2009; 53(2): 563-71. https://dx.doi.org/10.1128/AAC.00870-08.
  21. Joseph M.R., Al-Hakami A.M., Assiry M.M., Jamil A.S., Assiry A.M., Shaker M.A., Hamid M.E. In vitro anti-yeast activity of chloramphenicol: A preliminary report. J. Mycol. Med. 2015; 25(1): 17-22. https://dx.doi.org/10.1016/j.mycmed.2014.10.019.
  22. Ambrose P.J. Clinical pharmacokinetics of chloramphenicol and chloramphenicol succinate. Clin. Pharmacokinet. 1984; 9(3): 222-38. https://dx.doi.org/10.2165/00003088-198409030-00004.
  23. https://go.drugbank.com/drugs/DB00446.
  24. Nahata M.C., Powell D.A. Bioavailability and clearance of chloramphenicol after intravenous chloramphenicol succinate. Clin. Pharmacol. Ther. 1981; 30(3): 368-72. https://dx.doi.org/10.1038/clpt.1981.174.
  25. Sood S. Chloramphenicol - a potent armament against multi-drug resistant (MDR) gram negative bacilli? J. Clin. Diagn. Res. 2016; 10(2): DC01-3. https://dx.doi.org/10.7860/JCDR/2016/14989.7167.
  26. Cordero-Laurent E., Rodriguez C., Rodriguez-Cavallini E., Gamboa-Coronado M.M., Quesada-Gomez C. Resistance of bacteroides isolates recovered among clinical samples from a major Costa Rican hospital between 2000 and 2008 to B-lactams, clindamycin, metronidazole, and chloramphenicol. Rev. Esp. Quimioter. 2012; 25(4): 261-5.
  27. Thomas R.K., Melton R., Asbell P.A. Antibiotic resistance among ocular pathogens: current trends from the ARMOR surveillance study (2009-2016). Clin. Optom. (Auckl). 2019; 11: 15-26. https://dx.doi.org/10.2147/0PT0.S189115.
  28. Croghan C., Lockington D. Management of MRSA-positive eye swabs and the potential advantages of chloramphenicol availability in the United Kingdom. Eye (Lond). 2018; 32(1): 157-9. https://dx.doi.org/10.1038/eye.2017.257.
  29. Fayyaz М., Ali Mirza I., Ahmed Z., Kqpa M., Kubina R., Kabala-Dzik A. et al. In vitro susceptibility of chloramphenicol against methicillin-resistant staphylococcus aureus. J. Coll. Physicians Surg. Paki. 2013; 23(9): 637-40.
  30. Shanmuganathan V.A., Armstrong M., Buller A., Tullo A.B. External ocular infections due to methicillin-resistant Staphylococcus aureus (MRSA). Eye (Lond). 2005; 19(3): 284-91. https://dx.doi.org/10.1038/sj.eye.6701465.
  31. Mendes C.M.F., Sinto S.I.; Oplustil C.P.; ResistNet Brazil Group. In vitro susceptibility of gram-positive cocci isolated from skin and respiratory tract to azithromycin and twelve other antimicrobial agents. Braz. J. Infect. Dis. 2001; 5(5): 269-76. https://dx.doi.org/10.1590/S1413-86702001000500005.
  32. Иванчик Н.В., Сухорукова М.В., Чагарян А.Н., Дехнич А.В., Козлов Р.С. и др. Антиб иотикорезистентность клинических штаммов Streptococcus pyogenes в России: результаты многоцентрового эпидемиологического исследования «ПеГАС 2014-2017». Клиническая микробиология и антимикробная химиотерапия. 2020; 22(1): 40-5. doi: 10.36488/cmac.2020.1.40-45.
  33. Chalita M.R., Hofling-Lima A.L., Paranhos A. Jr, Schor P., Belfort R. Jr. Shifting trends in in vitro antibiotic susceptibilities for common ocular isolates during a period of 15 years. Am. J. Ophthalmol. 2004; 137(1): 43-51. https://dx.doi.org/10.1016/s0002-9394(03)00905-x.
  34. Liaqat I., Sumbal F., Sabri A.N. Tetracycline and chloramphenicol efficiency against selected biofilm forming bacteria. Curr. Microbiol. 2009; 59(2): 212-20. https://dx.doi.org/10.1007/s00284-009-9424-9.
  35. Drago L. Chloramphenicol resurrected: A journey from antibiotic resistance in eye infections to biofilm and ocular microbiota. Microorganisms. 2019; 7(9): 278. https://dx.doi.org/10.3390/microorganisms7090278.
  36. Patil N., Mule P. Sensitivity pattern of salmonella typhi and paratyphi a isolates to chloramphenicol and other anti-typhoid drugs: An in Vitro Study. Infect. Drug Resist. 2019; 12: 3217-25. https://dx.doi.org/10.2147/IDR.S204618.
  37. Егорова С.А., Кулешов К.В., Кафтырева Л.А., Матвеева З.Н. Чувствительность к антибиотикам, механизмы резистентности и филогенетическая структура популяции S. Typhi, выделенных в 2005- 2018 гг. в Российской Федерации. Инфекция и иммунитет. 2020; 10(1): 99-110 https://dx.doi.org/10.15789/10.15789/2220-7619-ASM-1171.
  38. Kharsany A.B., Hoosen A.A., Van den Ende J. Antimicrobial susceptibilities of Gardnerella vaginalis. Antimicrob. Agents Chemother. 1993; 37(12): 2733-5. https://dx.doi.org/10.1128/aac.37.12.2733.
  39. de Souza D.M.K., Diniz C.G., Filho D.S.C., Andrade de Oliveira L.M., Coelho D.M., Talha L.S. et al. Antimicrobial susceptibility and vaginolysin in Gardnerella vaginalis from healthy and bacterial vaginosis diagnosed women. J. Infect. Dev. Ctries. 2016; 10(9): 913-9. https://dx.doi.org/10.3855/jidc.7161.
  40. Ara N.N.R., Husain A., Akter N., Ahmed S. Detection and antibiotic sensitivity pattern of Gardnerella vaginalis isolated from bacterial vaginosis patients attending Chittagong Medical College Hospital. Chatt. Maa Shi. Hosp. Med. Coll. J. 2017; 16(1): 48-53. https://dx.doi.org/10.3329/cmoshmcj.v16i1.34987.
  41. Wang N., Zhou Y., Zhang H., Liu Y. In vitro activities of acetylmidecamycin and other antimicrobials against human macrolide-resistant Mycoplasma pneumoniae isolates. J. Antimicrob. Chemother. 2020; 75(6): 1513-7. https://dx.doi.org/10.1093/jac/dkaa027.
  42. Longdoh N., Gregory H.-E., Djeumako W., Nguedia A., Francois-Xavier M.-K., Tebit K. The occurrence and antimicrobial susceptibility patterns of mycoplasma hominis and Ureaplasma urealyticum in Pregnant Women in Three District Hospitals in Douala, Cameroon. J. Adv. Med. Med. Res. 2018; 27(11): 1-11. https://dx.doi.org/10.9734/JAMMR/2018/43356.
  43. Zanoschi C., Anton C., Anton E., Costachescu G., Teleman S., Costachescu G. et al. Cervugid ovules in cervico-vaginal infections and cervix uteri precancerous conditions treatment. Rev. Med. Chir. Soc. Med. Nat. Iasi. 2004; 108(3): 628-34.
  44. Аполихина И.А., Саидова А.С., Куликов И.А., Баранов И.И. Применение нового комбинированного препарата для местного применения (метро-нидазол + хлорамфеникол + натамицин + гидрокортизона ацетат) для лечения вагинитов различной этиологии. Акушерство и гинекология. 2020; 7: 143-50. https://dx.doi.org/10.18565/aig.2020.7.143-150.
  45. Ledger W.J., Gee C.L., Lewis W.P., Bobitt J.R. Comparison of clindamycin and chloramphenicol in treatment of serious infections of the female genital tract. J. Infect. Dis. 1977; 135(Suppl.): S30-4. https://dx.doi.org/10.1093/infdis/135.supplement.s30.
  46. Harding G.K., Buckwold F.J., Ronald A.R., Marrie T.J., Brunton S., Koss J.C. et al. Prospective, randomized comparative study of clindamycin, chloramphenicol, and ticarcillin, each in combination with gentamicin, in therapy for intraabdominal and female genital tract sepsis. J. Infect. Dis. 1980; 142(3): 38493. https://dx.doi.org/10.1093/infdis/142.3.384.
  47. Chow A.W., Marshall J.R., Guze L.B. A double-blind comparison of clindamycin with penicillin plus chloramphenicol in treatment of septic abortion. J. Infect. Dis. 1977; 135(Suppl.): S35-9. https://dx.doi.org/10.1093/infdis/135.supplement.s35.
  48. Udoh A., Effa E.E., Oduwole O., Okusanya B.O., Okafo O. Antibiotics for treating septic abortion. Cochrane Database Syst. Rev. 2016; (7): CD011528. https://dx.doi.org/10.1002/14651858.CD011528.pub2.
  49. Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001; 46(1-3): 3-26. https://dx.doi.org/10.1016/S0169-409X(00)00129-0.
  50. Wang M.Y., Sadum A.A. Drug-related mitochondrial optic neuropathies. J. Neuroophthalmol. 2013; 33(2): 172-8. https://dx.doi.org/10.1097/ WNO.0b013e3182901969.
  51. Dajani A.S., Kauffman R.E. The renaissance of chloramphenicol. Pediatr. Clin. North Am. 1981; 28(1): 195-202. https://dx.doi.org/10.1016/s0031-3955(16)33970-0.
  52. https://www.drugs.com/sfx/chloramphenicol-side-effects.html#refs
  53. Wiest D.B., Cochran J.B., Tecklenburg F.W. Chloramphenicol toxicity revisited: a 12-year-old patient with a brain abscess. J. Pediatr. Pharmacol. Ther. 2012; 17(2): 182-8. https://dx.doi.org/10.5863/1551-6776-17.2.182.
  54. Ohnishi S., Murata M., Ida N., Oikawa S., Kawanishi S. Oxidative DNA damage induced by metabolites of chloramphenicol, an antibiotic drug. Free Radic. Res. 2015; 49(9): 1165-72. https://dx.doi.org/10.3109/10715762.2015.1050963.
  55. Maluf E., Hamerschlak N., Cavalcanti A.B., Jdnior A.A., Eluf-Neto J., Falcao R.P. et al. Incidence and risk factors of aplastic anemia in Latin American countries: the LATIN case-control study. Haematologica. 2009; 94(9): 1220-6. https://dx.doi.org/10.3324/haematol.2008.002642.
  56. Cummings E.D., Kong E.L., Edens M.A. Gray Baby Syndrome. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan. Available at: https://www.ncbi.nlm.nih.gov/books/NBK448133/
  57. Eliakim-Raz N., La dor A., Leibovici-Weissman Y., Elbaz M., Paul M., Leibovici L. Efficacy and safety of chloramphenicol: joining the revival of old antibiotics? Systematic review and meta-analysis of randomized controlled trials. J. Antimicrob. Chemother. 2015; 70(4): 979-96. https://dx.doi.org/10.1093/jac/dku530.
  58. Czeizel A.E., Rockenbauer M., Sorensen H.T., Olsen J. A population-based case-control teratologic study of oral chloramphenicol treatment during pregnancy. Eur. J. Epidemiol. 2000; 16(4): 323-7. https://dx.doi.org/10.1023/a:1007623408010.
  59. Shen A.Y., Haddad E.J., Hunter-Smith D.J., Rozen W.M. Efficacy and adverse effects of topical chloramphenicol ointment use for surgical wounds: a systematic review. A.N.Z. J. Surg. 2018; 88(12): 1243-6. https://dx.doi.org/10.1111/ans.14465.
  60. Walker S., Diaper C.J., Bowman R., Sweeney G., Seal D.V., Kirkness C.M. Lack of evidence for systemic toxicity following topical chloramphenicol use. Eye (Lond). 1998; 12(Pt. 5): 875-9. https://dx.doi.org/10.1038/eye.1998.221.
  61. Rose P.W., Harnden A., Brueggemann A.B., Perera R., Sheikh A., Crook D., Mant D. Chloramphenicol treatment for acute infective conjunctivitis in children in primary care: a randomised double-blind placebo-controlled trial. Lancet. 2005; 366(9479): 37-43. https://dx.doi.org/10.1016/S0140-6736(05)66709-8.
  62. McGhee C.N., Anastas C.N. Widespread ocular use of topical chloramphenicol: is there justifiable concern regarding idiosyncratic aplastic anaemia? Br. J. Ophthalmol. 1996; 80(2): 182-4. https://dx.doi.org/10.1136/bjo.80.2.182.
  63. Laporte J.R., Vidal X., Ballann E., Ibanez L. Possible association between ocular chloramphenicol and aplastic anaemia--the absolute risk is very low. Br. J. Clin. Pharmacol. 1998; 46(2): 181-4. https://dx.doi.org/10.1046/j.1365-2125.1998.00773.x.
  64. Thomseth V., Cejvanovic V., Jimenez-Solem E., Petersen K.M., Poulsen H.E., Andersen J.T. Exposure to topical chloramphenicol during pregnancy and the risk of congenital malformations: a Danish nationwide cohort study. Acta Ophthalmol. 2015; 93(7): 651-3. https://dx.doi.org/10.1111/aos.12737.
  65. Harauchi S., Osawa T., Kubono N., Itoh H., Naito T., Kawakami J. Transfer of vaginal chloramphenicol to circulating blood in pregnant women and its relationship with their maternal background and neonatal health. J. Infect. Chemother. 2017; 23(7): 446-51. https://dx.doi.org/10.1016/j.jiac.2017.03.015.
  66. Muzny C.A., Kardas P. A narrative review of current challenges in the diagnosis and management of bacterial vaginosis. Sex. Transm. Dis. 2020; 47(7): 441-6. https://dx.doi.org/10.1097/OLQ.0000000000001178.
  67. Пустотина О.А. Бактериальный вагиноз: патогенез, диагностика, лечение и профилактика. Акушерство и гинекология. 2018; 3: 150-6. [Pustotina O.A. Bacterial vaginosis: pathogenesis, diagnosis, treatment, and prevention. Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2018; (3): 150-6. (in Russian)]. https://dx.doi.org/10.18565/aig.2018.3.150-156.
  68. https://www.drugs.com/sfx/clindamycin-side-effects.html#professional
  69. Quidley A.M., Bookstaver P.B., Gainey A.B., Gainey M.D. Fatal clindamycin-induced drug rash with eosinophilia and systemic symptoms (DRESS) syndrome. Pharmacotherapy. 2012; 32(12): e387-92. https://dx.doi.org/10.1002/phar.1142.
  70. Tian D., Mohan R.J., Stallings G. Drug rash with eosinophilia and systemic symptoms syndrome associated with clindamycin. Am. J. Med. 2010; 123(11): e7-8. https://dx.doi.org/10.1016/j.amjmed.2010.04.004
  71. Karakayali B, Yazar A.S., Qakir D., Cetemen A., Kariminikoo M., Deliloglu B. et al. Drug reaction with Eosinophilia and systemic symptoms (DRESS) syndrome associated with cefotaxime and clindamycin use in a 6 year-old boy: a case report. Pan. Afr. Med. J. 2017; 28: 218. https://dx.doi.org/10.11604/pamj.2017.28.218.10828
  72. https://www.drugs.com/sfx/metronidazole-side-effects.html#professional
  73. Soule A.F., Green S.B., Blanchette L.M. Clinical efficacy of 12-h metronidazole dosing regimens in patients with anaerobic or mixed anaerobic infections. Ther. Adv. Infect. Dis. 2018; 5(3): 57-62. https://dx.doi.org/10.1177/2049936118766462
  74. Borin M.T., Powley G.W., Tackwell K.R., Batts D.H. Absorption of clindamycin after intravaginal application of clindamycin phosphate 2% cream. J. Antimicrob. Chemother. 1995; 35(6): 833-41. https://dx.doi.org/10.1093/jac/35.6.833
  75. Borin M.T., Ryan K.K., Hopkins N.K. Systemic absorption of clindamycin after intravaginal administration of clindamycin phosphate ovule or cream. J. Clin. Pharmacol. 1999; 39(8): 805-10. https://dx.doi.org/10.1177/00912709922008461
  76. Fischbach F., Petersen E.E., Weissenbacher E.R., Martius J., Hosmann J., Mayer H. Efficacy of clindamycin vaginal cream versus oral metronidazole in the treatment of bacterial vaginosis. Obstet. Gynecol. 1993; 82(3): 405-10
  77. Alper M.M., Barwin B.N., McLean W.M., McGilveray I.J., Sved S. Systemic absorption of metronidazole by the vaginal route. Obstet. Gynecol. 1985; 65(6): 781-4

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies