Impact of preimplantation genetic testing on assisted reproductive technology outcomes in couples with male factor infertility


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Background: In recent years, considerable attention has been focused on the association between severe male factor (SMF) and the incidence of embryonic aneuploidy, including whether SMF should be considered an indication for preimplantation genetic testing for aneuploidy (PGT-A). Objective: To investigate the impact of men's age and form of male infertility on the rate of embryonic aneuploidy and the outcomes of assisted reproductive technology (ART). Materials and methods: This retrospective study analyzed 2915 ART cycles (2225 stimulation cycles, including 371 cycles with PGT-A and 690 cryopreserved cycles). The ejaculate was evaluated based on the sperm quality criteria of the WHO reference values. The SMF group consisted of patients with oligoasthenoteratozoospermia and patients with testicular biopsy. Patients with teratozoospermia were divided into two groups, categorized by the percentage of morphologically abnormal spermatozoa. On day five after fertilization, the embryo trophectoderm was biopsied, followed by PGT-A. Results: Comparison of ART outcomes in stimulation cycles and a fresh embryo transfer and in cryopreserved cycles with and without PGT-A showed statistically significantly lower pregnancy and birth rates in patients with the sperm morphology score of 0-2% and 3% in cryopreserved cycles without PGT-A. Patients with SMF undergoing ART with PGT-A showed a trend towards increasing pregnancy and birth rates. Conclusion: PGT-A can improve pregnancy outcomes for couples with SMF with fewer embryos transferred due to reducing early pregnancy losses.

Full Text

Restricted Access

About the authors

Natalia P. Makarova

V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: np_makarova@oparina4.ru
Dr. Biol. Sci., Senior Researcher at the BV. Leonov Department of Assisted Technologies for the Treatment of Infertility

Nataliya N. Lobanova

V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Junior Researcher at the BV. Leonov Department of Assisted Technologies for the Treatment of Infertility

Elena V. Kulakova

V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: e_kulakova@oparina4.ru
PhD, Senior Researcher, Professor BV. Leonov Department of IVF

Oksana S. Nepsha

V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: o_nepsha@oparina4.ru
PhD. (Biol. Sci.), Researcher at the BV. Leonov Department of Assisted Technologies for the Treatment of Infertility

Alexey N. Ekimov

V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: a_ekimov@oparina4.ru
doctor-laboratory geneticist, Head of the Group of preimplantation genetic screening of the Laboratory of Molecular Genetic Methods

Elena A. Kalinina

V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: e_kalinina@oparina4.ru
Dr. Med. Sci., Professor, Head of the BV. Leonov Department of Assisted Technologies for the Treatment of Infertility

References

  1. Palermo G., Joris H., Devroey P., Van Steirteghem A.C. Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet. 1992; 340(8810): 17-8. https://dx.doi.org/10.1016/0140-6736(92)92425-f.
  2. de Mouzon J., Chambers G.M., Zegers-Hochschild F., Mansour R., Ishihara O., Banker M. et al. International Committee for Monitoring Assisted Reproductive Technologies world report: assisted reproductive technology 2012f Hum. Reprod. 2020; 35(8): 1900-13. https://dx.doi.org/10.1093/humrep/deaa090.
  3. Brugh V.M., Lipshultz L.I. Male factor infertility: evaluation and management. Med. Clin. North Am. 2004; 88(2): 367-85. https://dx.doi.org/10.1016/S0025-7125(03)00150-0.
  4. Punab M., Poolamets O., Paju P., Vihljajev V., Pomm K., Ladva R. et al. Causes of male infertility: a 9-year prospective monocentre study on 1737 patients with reduced total sperm counts. Hum. Reprod. 2017; 32(1): 18-31. https://dx.doi.org/10.1093/humrep/dew284.
  5. Bergh C., Pinborg A., Wennerholm U.B. Parental age and child outcomes. Fertil. Steril. 2019; 111(6): 1036-46. https://dx.doi.org/10.1016/j.fertnstert.2019.04.026.
  6. Sagi-Dain L., Sagi S., Dirnfeld M. Effect of paternal age on reproductive outcomes in oocyte donation model: a systematic review. Fertil. Steril. 2015; 104(4): 857-65.e1. https://dx.doi.org/10.1016/j.fertnstert.2015.06.036.
  7. Carvalho F., Coonen E., Goossens V., Kokkali G., Rubio C., Meijer-Hoogeveen M. et al. ESHRE PGT Consortium good practice recommendations for the organisation of PGT. Hum. Reprod. Open. 2020; 2020(3): hoaa021. https://dx.doi.org/10.1093/hropen/hoaa021.
  8. Magli M.C., Gianaroli L., Ferraretti A.P., Gordts S., Fredericks V., Crippa A. Paternal contribution to aneuploidy in preimplantation embryos. Reprod. Biomed. Online. 2009; 18(4): 536-42. https://dx.doi.org/10.1016/s1472-6483(10)60131-9.
  9. Cooper T.G., Noonan E., von Eckardstein S., Auger J., Baker H.W.G., Behre H.M. et al. World Health Organization reference values for human semen characteristics. Hum. Reprod. Update. 2010; 16(3): 231-45. https://dx.doi.org/10.1093/humupd/dmp048.
  10. Alpha Scientists in Reproductive Medicine and ESHRE Special Interest Group of Embryology. The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum. Reprod. 2011; 26(6): 1270-83. https://dx.doi.org/10.1093/humrep/der037.
  11. Franasiak J.M., Forman E.J., Hong K.H., Werner M.D., Upham K.M., Treff N.R., Scott R.T. Jr. The nature of aneuploidy with increasing age of the female partner: a review of 15,169 consecutive trophectoderm biopsies evaluated with comprehensive chromosomal screening. Fertil. Steril. 2014; 101(3): 656-63.e1. https://dx.doi.org/10.1016/j.fertnstert.2013.11.004.
  12. Смольникова В.Ю., Агаджанян Д.С., Красный А.М. Активные формы кислорода и компоненты системы антиоксидантной защиты как маркеры прогнозирования качества эмбрионов у супружеских пар с различными типами бесплодия. Акушерство и гинекология. 2020; 11: 55-60. https://dx.doi.org/10.18565/aig.2020.11.55-60.
  13. Kasman A.M., Li S., Zhao Q., Behr B., Eisenberg M.L. Relationship between male age, semen parameters and assisted reproductive technology outcomes. Andrology. 2021; 9(1): 245-52. https://dx.doi.org/10.1111/andr.12908.
  14. Dviri M., Madjunkova S., Koziarz A., Antes R., Abramov R., Mashiach J. et al. Is there a correlation between paternal age and aneuploidy rate? An analysis of 3,118 embryos derived from young egg donors. Fertil. Steril. 2020; 114(2): 293-300. https://dx.doi.org/10.1016/j.fertnstert.2020.03.034. Erratum in: Fertil. Steril. 2020; 114(5): 1122.
  15. Hanson B.M., Kim J.G., Osman E.K., Tiegs A.W., Lathi R.B., Cheng P.J. et al. Impact of paternal age on embryology and pregnancy outcomes in the setting of a euploid single-embryo transfer with ejaculated sperm: retrospective cohort study. F. S. Rep. 2020; 1(2): 99-105. https://dx.doi.org/10.1016/j.xfre.2020.06.004.
  16. Morris G., Mavrelos D., Odia R., Vinals Gonzalez X., Cawood S., Yasmin E. et al. Paternal age over 50 years decreases assisted reproductive technology (ART) success: A single UK center retrospective analysis. Acta Obstet. Gynecol. Scand. 2021; 100(10): 1858-67. https://dx.doi.org/10.1111/aogs.14221.
  17. Mazzilli R., Cimadomo D., Vaiarelli A., Capalbo A., Dovere L., Alviggi E. et al. Effect of the male factor on the clinical outcome of intracytoplasmic sperm injection combined with preimplantation aneuploidy testing: observational longitudinal cohort study of 1,219 consecutive cycles. Fertil. Steril. 2017; 108(6): 961-72.e3. https://dx.doi.org/10.1016/j.fertnstert.2017.08.033.
  18. Bartolacci A., Pagliardini L., Makieva S., Salonia A., Papaleo E., Vigano P. Abnormal sperm concentration and motility as well as advanced paternal age compromise early embryonic development but not pregnancy outcomes: a retrospective study of 1266 ICSI cycles. J. Assist. Reprod. Genet. 2018; 35(10): 1897-903. https://dx.doi.org/10.1007/s10815-018-1256-8.
  19. Sedo C.A., Bilinski M., Lorenzi D., Uriondo H., Noblia F., Longobucco V. et al. Effect of sperm DNA fragmentation on embryo development: clinical and biological aspects. JBRA Assist. Reprod. 2017; 21(4): 343-50. https://dx.doi.org/10.5935/1518-0557.20170061.
  20. Sacha C.R., Dimitriadis I., Christou G., James K., Brock M.L., Rice S.T. et al. The impact of male factor infertility on early and late morphokinetic parameters: a retrospective analysis of 4126 time-lapse monitored embryos. Hum. Reprod. 2020; 35(1): 24-31. https://dx.doi.org/10.1093/humrep/dez251.
  21. Tarozzi N., Nadalini M., Lagalla C., Coticchio G., Zaca C., Borini A. Male factor infertility impacts the rate of mosaic blastocysts in cycles of preimplantation genetic testing for aneuploidy. J. Assist. Reprod. Genet. 2019; 36(10): 2047-55. https://dx.doi.org/10.1007/s10815-019-01584-w.
  22. Linan A., Lawrenz B., El Khatib I., Bayram A., Arnanz A., Rubio C. et al. Clinical reassessment of human embryo ploidy status between cleavage and blastocyst stage by Next Generation Sequencing. PLoS One. 2018; 13(8): e0201652. https://dx.doi.org/10.1371/journal.pone.0201652.
  23. Kong A., Frigge M.L., Masson G., Besenbacher S., Sulem P., Magnusson G. et al. Rate of de novo mutations and the importance of father's age to disease risk. Nature. 2012; 488(7412): 471-5. https://dx.doi.org/10.1038/nature11396.
  24. Carrasquillo R.J., Kohn T.P., Cinnioglu C., Rubio C., Simon C., Ramasamy R., Al-Asmar N. Advanced paternal age does not affect embryo aneuploidy following blastocyst biopsy in egg donor cycles. J. Assist. Reprod. Genet. 2019; 36(10): 2039-45. https://dx.doi.org/10.1007/s10815-019-01549-z.
  25. Coates A., Hesla J.S., Hurliman A., Coate B., Holmes E., Matthews R. et al. Use of suboptimal sperm increases the risk of aneuploidy of the sex chromosomes in preimplantation blastocyst embryos. Fertil. Steril. 2015; 104(4): 866-72. https://dx.doi.org/10.1016/j.fertnstert.2015.06.033.
  26. Kahraman S., Sahin Y., Yelke H., Kumtepe Y., Tufekci M.A., Yapan C.C. et al. High rates of aneuploidy, mosaicism and abnormal morphokinetic development in cases with low sperm concentration. J. Assist. Reprod. Genet. 2020; 37(3): 629-40. https://dx.doi.org/10.1007/s10815-019-01673-w.
  27. Xu R., Ding Y., Wang Y., He Y., Sun Y., Lu Y., Yao N. Comparison of preimplantation genetic testing for aneuploidy versus intracytoplasmic sperm injection in severe male infertility. Andrologia. 2021; 53(6): e14065. https://dx.doi.org/10.1111/and.14065.
  28. Долгушина Н.В., Сокур С.А., Глинкина Ж.И., Калинина Е.А. Исходы программ вспомогательных репродуктивных технологий у супружеских пар с различными видами патозооспермии у мужчин. Акушерство и гинекология. 2013; 10: 69-75.
  29. Achache H., Revel A. Endometrial receptivity markers, the journey to successful embryo implantation. Hum. Reprod. Update. 2006; 12(6): 731-46. https://dx.doi.org/10.1093/humupd/dml004.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies