Predictors of development and progression of cervical dysplastic processes


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Cervical cancer (CC) ranks fourth in the structure of morbidity and mortality from cancers in women. Early detection of CC and assessment of malignancy prognoses are of critical importance, because women who have early-stage invasive carcinoma have signif icantly higher chances of being cured, which is in turn cost effective. Publications in the PubMed and Cochrane databases; recommendations of international and Russian professional communities, clinical studies published in the public domain to search for modern markers for the progression of cervical precancerous processes have been analyzed. The review presents markers for the progression of cervical precancerous processes and describes the main mechanisms of the pathogenic effect of human papillomavirus (HPV) on epithelial cells. Along with well-known markers, such as p16, Ki-67, proteomics that is a valuable tool for studying the mechanisms involved in the interaction of viral infection and protein dysfunction leading to cervical carcinogenesis is being actively investigated. Metabolomics is widely used to study cancer metabolism. Metabolites, the end products of various biological processes, hold promise as accurate biomarkers that reflect past biological events, such as genetic mutations and environmental changes. Altered metabolites will help to better understand metabolic dysregulation during tumor initiation and progression. Conclusion: An analysis of the data available in the literature has shown that markers for dysplasia progression enhance the possibilities of timely diagnosis and therapy.

Full Text

Restricted Access

About the authors

Sergey A. Levakov

I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University)

Email: levakoff@yandex.ru
Dr. Med. Sci., Professor, Head of the Department of Obstetrics and Gynecology of NV. Sklifosovsky ICM

Diana R. Mushkyurova

I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University)

Email: drramazanovna@gmail.com
postgraduate student of the Department of Obstetrics and Gynecology of the NV. Sklifosovsky ICM

Natalia A. Sheshukova

I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University)

Email: dr.sheshukova@mam.ru
Dr. Med. Sci., Professor at the Department of Obstetrics and Gynecology of the NV. Sklifosovsky ICM

Elizaveta A. Obukhova

I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University)

Email: liza_obukhova@mail.ru
Teaching Assistant at the Department of Obstetrics and Gynecology of NV. Sklifosovsky ICM

References

  1. Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021; 71(3): 209-49. https://dx.doi.org/10.3322/caac.21660.
  2. Ашрафян Л.А., Киселев В.И., Кузнецов И.Н., Серова О.Ф., Узденова З.Х., Герфанова Е.В. Рак шейки матки: проблемы профилактики и скрининга в Российской Федерации. Доктор.Ру. 2019; 11: 50-4. [Ashrafyan L.A., Kiselev V.I., Kuznetsov I.N., Serova O.F., Uzdenova Z.Kh., Gerfanova E.V. Cervical cancer: issues with prevention and Screening in the Russian Federation. Doctor.Ru. 2019; 11: 50-4. (in Russian)]. https://dx.doi.org/10.31550/1727-2378-2019-166-11-50-54.
  3. Pappa K.I., Kontostathi G., Lygirou V., Zoidakis J., Anagnou N.P. Novel structural approaches concerning HPV proteins: Insight into targeted therapies for cervical cancer (Review). Oncol. Rep. 2018; 39(4): 1547-54. https://dx.doi.org/10.3892/or.2018.6257.
  4. Bogani G., Leone Roberti Maggiore U., Signorelli M., Martinelli F., Ditto A., Sabatucci I. et al. The role of human papillomavirus vaccines in cervical cancer: Prevention and treatment. Crit. Rev. Oncol. Hematol. 2018; 122: 92-7. https://dx.doi.org/10.1016/j.critrevonc.2017.12.017.
  5. IARC. Working Group on the evaluation of carcinogenic risks to humans. Geneva: WHO; 1995.
  6. Cubie H.A., Cuschieri K.S., Tong C.Y.W. Papillomaviruses and polyomaviruses. In: Greenwood D., Barer M., Slack R., Irving W., eds. Medical microbiology. 18th ed. London: Churchill Livingstone Elsevier; 2012.
  7. Bergeron C., Ronco G., Reuschenbach M., Wentzensen N., Arbyn M., Stoler M. et al. The clinical impact of using p16INK4a immunochemistry in cervical histopathology and cytology: an update of recent developments. Int. J. Cancer. 2015; 136(12): 2741-51. https://dx.doi.org/10.1002/ijc.28900.
  8. Narisawa-Saito M., Kiyono T. Basic mechanisms of high-risk human papillomavirus-induced carcinogenesis: roles of E6 and E7 proteins. Cancer Sci. 2007; 98(10): 1505-11. https://dx.doi.org/10.1111/j.1349-7006.2007.00546.x.
  9. MUnger K., Basile J.R., Duensing S., Eichten A., Gonzalez S.L., Grace M., Zacny V.L. Biological activities and molecular targets of the human papillomavirus E7 oncoprotein. Oncogene. 2001; 20(54): 7888-98. https://dx.doi.org/10.1038/sj.onc.1204860.
  10. Howley P.M. Warts, cancer and ubiquitylation: lessons from the papillomaviruses. Trans. Am. Clin. Climatol. Assoc. 2006; 117: 113-26; discussion 126-7.
  11. Oyervides-Munoz M.A., Perez-Maya A.A., Rodriguez-Gutierrez H.F., Gomez-Macias G.S., Fajardo-Ramirez O.R., Trevino V. et al. Understanding the HPV integration and its progression to cervical cancer. Infect. Genet. Evol. 2018; 61: 134-44. https://dx.doi.org/10.1016/j.meegid.2018.03.003.
  12. Lau L., Gray E.E., Brunette R.L., Stetson D.B. DNA tumor virus oncogenes antagonize the c GAS-STING DNA-sensing pathway. Science. 2015; 350(6260): 568-71. https://dx.doi.org/10.1126/science.aab3291.
  13. Groves I.J., Coleman N. Pathogenesis of human papillomavirus-associated mucosal disease. J. Pathol. 2015; 235(4): 527-38. https://dx.doi.org/10.1002/path.4496.
  14. Wright A.A., Howitt B.E., Myers A.P., Dahlberg S.E., Palescandolo E., Van Hummelen P. et al. Oncogenic mutations in cervical cancer: genomic differences between adenocarcinomas and squamous cell carcinomas of the cervix. Cancer. 2013; 119(21): 3776-83. https://dx.doi.org/10.1002/cncr.28288.
  15. Bergeron C., Ikenberg H., Sideri M., Denton K., Bogers J., Schmidt D. et al. Prospective evaluation of p16/Ki-67 dual-stained cytology for managing women with abnormal Papanicolaou cytology: PALMS study results. Cancer Cytopathol. 2015; 123(6): 373-81. https://dx.doi.org/10.1002/cncy.21542.
  16. Branca M., Ciotti M., Giorgi C., Santini D., Di Bonito L., Costa S. et al. Predicting high-risk human papillomavirus infection, progression of cervical intraepithelial neoplasia, and prognosis of cervical cancer with a panel of 13 biomarkers tested in multivariate modeling. Int. J. Gynecol. Pathol. 2008; 27(2): 265-73. https://dx.doi.org/10.1097/PGP.0b013e318159cbc0.
  17. Трухачёва Н.В. Медицинская статистика: учебное пособие. Ростов-на-Дону: Феникс; 2017.
  18. Межевитинова Е.А., Абакарова П.Р., Хлебкова Ю.С. Предраковые поражения шейки матки. Тактика ведения. Медицинский совет. 2016; 12: 112-8. https://dx.doi.org/10.21518/2079-701X-2016-12-112-118.
  19. Ikenberg H., Bergeron C., Schmidt D., Griesser H., Alameda F., Angeloni C. et al.; PALMS Study Group. Screening for cervical cancer precursors with p16/Ki-67 dual-stained cytology: results of the PALMS study. J. Natl. Cancer Inst. 2013; 105(20): 1550-7. https://dx.doi.org/10.1093/jnci/djt235.
  20. Prendiville W., Sankaranarayanan R. Colposcopy and treatment of cervical precancer. Lyon IARC; 2017. (IARC Technical Report, No. 45.) Annex 1. Transformation zone types. Available at: https://www.ncbi.nlm.nih.gov/books/NBK568386/
  21. Nam E.J., Kim J.W., Kim S.W., Kim Y.T., Kim J.H., Yoon B.S. et al. The expressions of the Rb pathway in cervical intraepithelial neoplasia; predictive and prognostic significance. Gynecol. Oncol. 2007; 104(1): 207-11. https://dx.doi.org/10.1016/j.ygyno.2006.07.043.
  22. Feng W., Xiao J., Zhang Z., Rosen D.G., Brown R.E., Liu J., Duan X. Senescence and apoptosis in carcinogenesis of cervical squamous carcinoma. Mod. Pathol. 2007; 20(9): 961-6. https://dx.doi.org/10.1038/modpathol.3800927.
  23. Valenti G., Vitale S.G., Tropea A., Biondi A., Lagana A.S. Tumor markers of uterine cervical cancer: a new scenario to guide surgical practice? Updates Surg. 2017; 69(4): 441-9. https://dx.doi.org/10.1007/s13304-017-0491-3.
  24. Zhu X., Jin L., Zou S., Shen Q., Jiang W., Lin W., Zhu X. Immunohistochemical expression of RAGE and its ligand (S100A9) in cervical lesions. Cell Biochem. Biophys. 2013; 66(3): 843-50. https://dx.doi.org/10.1007/s12013-013-9515-x.
  25. Yang L., Bai H.-S., Deng Y., Fan L. High MALAT1 expression predicts a poor prognosis of cervical cancer and promotes cancer cell growth and invasion. Eur. Rev. Med. Pharmacol. Sci. 2015; 19(17): 3187-93.
  26. Liang T., Wang Y., Jiao Y., Cong S., Jiang X., Dong L. et al. LncRNA MALAT1 accelerates cervical carcinoma proliferation by suppressing miR-124 expression in cervical tumor cells. J. Oncol. 2021; 2021: 8836078. https://dx.doi.org/10.1155/2021/8836078.
  27. Леваков С.А., Шешукова Н.А., Обухова Е.А., Антипова Н.В., Павлюков М.С., Шахпаронов М.И. Уровень экспрессии параоксоназ при диспластических процессах шейки матки. Акушерство и гинекология. 2020; 2: 149-53. https://dx.doi.org/10.18565/aig.2020.2.149-153.
  28. El-Mansi M.T., Williams A.R. Evaluation of PTEN expression in cervical adenocarcinoma by tissue microarray. Int. J. Gynecol. Cancer. 2006; 16(3): 1254-60. https://dx.doi.org/10.1111/j.1525-1438.2006.00569.x.
  29. Wang P.H., Ko J.L., Tsai H.T., Yang S.F., Han C.P., Lin L.Y., Chen G.D. et al. Clinical significance of matrix metalloproteinase-2 in cancer of uterine cervix: a semiquantitative study of immunoreactivities using tissue array. Gynecol. Oncol. 2008; 108(3): 533-42. https://dx.doi.org/10.1016/j.ygyno.2007.11.018.
  30. Cao X.Q., Lu H.S., Zhang L., Chen L.L., Gan M.F. MEKK3 and survivin expression in cervical cancer: association with clinicopathological factors and prognosis. Asian Pac. J. Cancer Prev. 2014; 15(13): 5271-6. https://dx.doi.org/10.7314/apjcp.2014.15.13.5271.
  31. Blancas S., Medina-Berlanga R., Ortiz-Garcia L., Loredo-Ramirez A., Santos L. Protein expression analysis in uterine cervical cancer for potential targets in treatment. Pathol. Oncol. Res. 2019; 25(2): 493-501. https://dx.doi.org/10.1007/s12253-018-0401-0.
  32. Nicholson J.K., Lindon J.C. Systems biology: metabonomics. Nature. 2008; 455(7216): 1054-6. https://dx.doi.org/10.1038/4551054a.
  33. Zielinski D., Jamshidi N., Corbett A.J., Bordbar A., Thomas A., Palsson B.O. Systems biology analysis of drivers underlying hallmarks of cancer cell metabolism. Sci. Rep. 2017; 7: 41241. https://dx.doi.org/10.1186/1752-0509-6-9.
  34. Ye N., Liu C., Shi P. Metabolomics analysis of cervical cancer, cervical intraepithelial neoplasia and chronic cervicitis by 1H NMR spectroscopy. Eur. J. Gynaecol. Oncol. 2015; 36(2): 174-80.
  35. Yin M.Z., Tan S., Li X., Hou Y., Cao G., Li K. et al. Identification of phosphatidylcholine and lysophosphatidylcholine as novel biomarkers for cervical cancers in a prospective cohort study. Tumour Biol. 2016; 37(4): 548592. https://dx.doi.org/10.1007/s13277-015-4164-x.
  36. Hasim A., Aili A., Maimaiti A., Mamtimin B., Abudula A., Upur H. Plasma-free amino acid profiling of cervical cancer and cervical intraepithelial neoplasia patients and its application for early detection. Mol. Biol. Rep. 2013; 40(10): 5853-9. https://dx.doi.org/10.1007/s11033-013-2691-3.
  37. Ramchander N.C., Crosbie E.J. The role of the vaginal microbiome and gynaecological cancer: exercise caution when considering causation. BJOG. 2018; 125(3): 316. https://dx.doi.org/10.1111/1471-0528.14704.
  38. Piyathilake C.J., Ollberding N.J., Kumar R., Macaluso M., Alvarez R.D., Morrow C.D. Cervical microbiota associated with higher grade cervical intraepithelial neoplasia in women infected with high-risk human papillomaviruses. Cancer Prev. Res. (Phila). 2016; 9(5): 357-66. https://dx.doi.org/10.1158/1940-6207.CAPR-15-0350.
  39. Adebamowo S.N., Ma B., Zella D., Famooto A., Ravel J.; ACCME Research Group. Mycoplasma hominis and mycoplasma genitalium in the vaginal microbiota and persistent high-risk human papillomavirus infection. Front. Public Health. 2017; 5: 140. https://dx.doi.org/10.3389/fpubh.2017.00140.
  40. Yang X., Da M., Zhang W., Qi Q., Zhang C., Han S. Role of Lactobacillus in cervical cancer. Cancer Manag. Res. 2018; 10: 1219-29. https://dx.doi.org/10.2147/CMAR.S165228.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies