RELATIONSHIP BETWEEN LIPID METABOLISM AND INSULIN RESISTANCE IN GESTATIONAL DIABETES MELLITUS


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Gestational diabetes mellitus (GDM) that currently has an increasingly pronounced tendency to increase is an urgent problem in modern health care. GDM is a risk factor for the development of chronic metabolic diseases and cardiovascular pathology in mothers and their offspring, and it is a cause of adverse perinatal outcomes and neonatal mortality. There are more and more data on the molecular mechanisms of GDM in world literature; however, most of them remain unsystematized. In this connection, the investigators analyzed Russian and foreign literature on the problem of lipid metabolism in GDM and studied a number of molecular and cellular determinants of insulin resistance in pregnancy, which are associated with lipid metabolism disorders, as well as the role of free fatty acids in the development of lipid metabolism disorders. This review presents the relationship between the formed insulin resistance in GDM and free fatty acids, as well as regulators of adipogenesis, such as PPARγ, FABP4, FAS, and Pref-1. There was a correlation of changes in the indices among themselves, as well as with pregnancy outcomes in experimental models. Conclusion: Despite an abundance of information on this topic, the relationship between adipogenesis and insulin resistance has not been fully explored. There is a need for further investigation of PPARy, FABP4, FAS, and Pref-1 as possible practically applicable molecular and cellular biomarkers for GDM and long-term consequences in the woman and fetus.

Full Text

Restricted Access

About the authors

Victoria A. AFONINA

A.N. Gorodkov Ivanovo Research Institute of Maternity and Childhood, Ministry of Health of Russia; Ivanovo State Medical Academy, Ministry of Health of Russia

Email: ezhevika23023@yandex.ru
Postgraduate Student at the Department of Obstetrics and Gynecology, Neonatology, Anesthesiology and Resuscitation Ivanovo, Russia

Natalia V. BATRAK

Ivanovo State Medical Academy, Ministry of Health of Russia

Email: batrakn@inbox.ru
PhD, Associate Professor at the Department of Obstetrics and Gynecology, Medical Genetics Ivanovo, Russia

Anna I. MALYSHKINA

A.N. Gorodkov Ivanovo Research Institute of Maternity and Childhood, Ministry of Health of Russia; Ivanovo State Medical Academy, Ministry of Health of Russia

Email: ivniimid@inbox.ru
Dr. Med. Sci., Professor, Director, V.N. Gorodkov Ivanovo Research Institute of Motherhood and Childhood of the Ministry of Health of the Russian Federation, Head of the Department of Obstetrics and Gynecology, Medical Genetics, Ivanovo State Medical Academy Ministry of Health of the Russian Federation Ivanovo, Russia

Natalia Yu. SOTNIKOVA

A.N. Gorodkov Ivanovo Research Institute of Maternity and Childhood, Ministry of Health of Russia; Ivanovo State Medical Academy, Ministry of Health of Russia

Email: ivniimid@inbox.ru
Dr. Med. Sci., Professor, Honored Doctor of the Russian Federation, Head of the Laboratory of Clinical Immunology, V.N. Gorodkov Ivanovo Research Institute of Motherhood and Childhood, Ministry of Health of the Russian Federation, Professor at the Department of Pathophysiology and Immunology, Ivanovo State Medical Academy, Ministry of Health of the Russian Federation Ivanovo, Russia

References

  1. NCD Risk Factor Collaboration (NCD-RisC) Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet. 2017; 390(10113): 2627-42. https://dx.doi.org/10.1016/S0140-6736(17)32129-3.
  2. Lende M., Rijhsinghani A. Gestational diabetes: overview with emphasis on medical management.Int. J. Environ. Res. Public Health. 2020; 17(24): 9573. https://dx.doi.org/10.3390/ijerph17249573.
  3. Mishra S., Rao C.R., Shetty A. Trends in the diagnosis of gestational diabetes mellitus. Scientifica (Cairo). 2016; 2016: 5489015. https://dx.doi.org/10.1155/2016/5489015.
  4. Yadav S.B., Gopalakrishnan V., Kapoor D., Bhatia E., Singh R., Pradeep Y. et al. Evaluation of the prevalence of gestational diabetes mellitus in North Indians using the International Association of Diabetes and Pregnancy Study groups (IADPSG) criteria. J. Postgrad. Med. 2015; 61(3): 155-8. https://dx.doi.org/10.4103/0022-3859.159306.
  5. Абрамова М.Е., Ходжаева З.С., Горина К.А., Муминова К.Т., Горюнов К.В., Рагозин А.К., Силачев Д.Н. Гестационный сахарный диабет: скрининг и диагностические критерии в ранние сроки беременности. Акушерство и гинекология. 2021; 5: 25-32.
  6. Малышкина А.И., Батрак Н.В. Особенности гестационного периода и перинатальные исходы у женщин с гестационным сахарным диабетом. Вестник Ивановской медицинской академии. 2014; 19(1): 27-9.
  7. Ходжаева З.С., Снеткова Н.В., Клименченко Н.И., Абрамова М.Е., Дегтярева Е.И., Донников А.Е. Клинико-молекулярно-генетические детерминанты формирования гестационного сахарного диабета. Акушерство и гинекология. 2019; 4: 18-24.
  8. Матейкович Е.А. Неблагоприятные исходы беременности и гестационный сахарный диабет: от исследования HAPO к современным данным. Акушерство и гинекология. 2021; 2: 13-20. https://dx.doi.org/10.18565/aig.2021.2.13-20.
  9. Мирошник Е.В., Рюмина И.И., Зубков В.В. Влияние сахарного диабета матери на здоровье новорожденного. Акушерство и гинекология. 2016; 9: 45-9. https://dx.doi.org/10.18565/aig.2016.9.45-9
  10. Boden G. Obesity, insulin resistance and free fatty acids. Curr. Opin. Endocrinol. Diabetes Obes. 2011; 18(2): 139-43. https://dx.doi.org/10.1097/MED.0b013e3283444b09.
  11. Gastaldelli A., Gaggini M., De Fronzo R.A. Role of adipose tissue insulin resistance in the natural history of type 2 diabetes: results from the San Antonio Metabolism Study. Diabetes. 2017; 66(4): 815-22. https://dx.doi.org/10.2337/db16-1167.
  12. Chueire V.B., Muscelli E. Effect of free fatty acids on insulin secretion, insulin sensitivity and incretin effect - a narrative review. Arch. Endocrinol. Metab. 2021; 65(1): 24-31. https://dx.doi.org/10.20945/2359-3997000000313.
  13. Capurso C., Capurso A. From excess adiposity to insulin resistance: the role of free fatty acids. Vascul. Pharmacol. 2012; 57(2-4): 91-7. https://dx.doi.org/10.1016/j.vph.2012.05.003.
  14. Soboczak A.I.S., Blindauer C.A., Stewart A.J. Changes in plasma free fatty acids associated with type-2 diabetes. Nutrients. 2019; 11(9): 2022. https://dx.doi.org/10.3390/nu11092022.
  15. Abaraviciene S.M., Muhammed S.J., Amisten S., Lundquist I., Salehi A. GPR40 protein levels are crucial to the regulation of stimulated hormone secretion in pancreatic islets. Lessons from spontaneous obesity-prone and non-obese type 2 diabetes in rats. Mol. Cell. Endocrinol. 2013; 381(1-2): 150-9. https://dx.doi.org/10.1016/j.mce.2013.07.025.
  16. Xiao C., Dash S., Morgantini C., Lewis G.F. New and emerging regulators of intestinal lipoprotein secretion. Atherosclerosis. 2014; 233(2): 608-15. https://dx.doi.org/10.1016/j.atherosclerosis.2013.12.047.
  17. Villafan-Bernal J.R., Acevedo-Alba M., Reyes-Pavon R., Diaz-Parra G.A., Lip-Sosa D.L., Vazquez-Delfn H.I. et al. Plasma levels of free fatty acids in women with gestational diabetes and its intrinsic and extrinsic determinants: systematic review and meta-analysis. J. Diabetes Res. 2019; 2019: 7098470. https://dx.doi.org/10.1155/2019/7098470.
  18. Han L., Shen W.J., Bittner S., Kraemer F.B., Azhar S. PPARs: regulators of metabolism and as therapeutic targets in cardiovascular disease. Part II: PPAR-ß/б and PPAR-y. Future Cardiol. 2017; 13(3): 279-96. https://dx.doi.org/10.2217/fca-2017-0019.
  19. Zhang K., Yuan Q., Xie J., Yuan L., Wang Y. PPAR-y activation increases insulin secretion independent of CASK in INS-1 cells. Acta Biochim. Biophys. Sin. (Shanghai). 2019; 51(7): 715-22. https://dx.doi.org/10.1093/abbs/gmz052.
  20. Shao X., Wang M., Wei X., Deng S., Fu N., Peng Q. et al. Peroxisome proliferator-activated receptor-Y: master regulator of adipogenesis and obesity. Curr. Stem Cell Res. Ther. 2016; 11(3): 282-9. https://dx.doi.org/10.2174/1574888x10666150528144905.
  21. Fantacuzzi M., De Filippis B., Amoroso R., Giampietro L. PPAR ligands containing stilbene scaffold. Mini Rev. Med. Chem. 2019; 19(19): 1599-610. https://dx.doi.org/10.2174/1389557519666190603085026.
  22. Ahmadian М., Jae Suh М., Hah N., Liddle C., Atkins A.R., Downes M., Evans R.M. PPAR-y signaling and metabolism: the good, the bad and the future. Nat. Med. 2013; 19(5): 557-66. https://dx.doi.org/10.1038/nm.3159.
  23. Usuda D., Kanda T. Peroxisome proliferator-activated receptors for hypertension. World J. Cardiol. 2014; 6(8): 744-54. https://dx.doi.org/10.4330/wjc.v6.i8.744.
  24. Lefterova M.I., Haakonsson A.K., Lazar M.A., Mandrup S. PPARy and the global map of adipogenesis and beyond. Trends Endocrinol. Metab. 2014; 25(6): 293-302. https://dx.doi.org/10.1016/j.tem.2014.04.001.
  25. Li Y., Jin D., Xie W., Wen L., Chen W, Xu J. et al. PPAR-y and Wnt regulate the differentiation of MSCs into adipocytes and osteoblasts respectively. Curr. Stem Cell Res. Ther. 2018; 13(3): 185-92. https://dx.doi.org/10.2174/1574888X12666171012141908.
  26. Janani C., Ranjitha Kumari B.D. PPAR gamma gene - a review. Diabetes Metab. Syndr. 2015; 9(1): 46-50. https://dx.doi.org/10.1016/j.dsx.2014.09.015.
  27. Kadam L., Kohan-Ghadr H.R., Drewlo S. The balancing act - PPAR-y's roles at the maternal-fetal interface. Syst. Biol. Reprod. Med. 2015; 61(2): 65-71. https://dx.doi.org/10.3109/19396368.2014.991881.
  28. Furuhashi M., Saitoh S., Shimamoto K., Miura T. Fatty Acid-Binding Protein 4 (FABP4): pathophysiological insights and potent clinical biomarker of metabolic and cardiovascular diseases. Clin. Med. Insights Cardiol. 2015; 8(Suppl. 3): 23-33. https://dx.doi.org/10.4137/CMC.S17067.
  29. Trojnar M., Patro-Maiysza J., Kimber-Trojnar Z., Leszczynska-Gorzelak B., Mosiewicz J. Associations between Fatty Acid-Binding Protein 4 -a proinflammatory adipokine and insulin resistance, gestational and type 2 diabetes mellitus. Cells. 2019; 8(3): 227. https://dx.doi.org/10.3390/cells8030227.
  30. Cabia B., Andrade S., Carreira M.C., Casanueva F.F., Crujeiras A.B. A role for novel adipose tissue-secreted factors in obesity-related carcinogenesis. Obes. Rev. 2016; 17(4): 361-76. https://dx.doi.org/10.1111/obr.12377.
  31. Garin-Shkolnik T., Rudich A., Hotamisligil G.S., Rubinstein M. FABP4 attenuates PPARy and adipogenesis and is inversely correlated with PPARy in adipose tissues. Diabetes. 2014; 63(3): 900-11. https://dx.doi.org/10.2337/db13-0436.
  32. Fasshauer M., Blüher M., Stumvoll M. Adipokines in gestational diabetes. Lancet Diabetes Endocrinol. 2014; 2: 488-99. https://dx.doi.org/10.1016/S2213-8587(13)70176-1.
  33. Zhang Y., Zhang H.H., Lu J.H., Zheng S.Y., Long T., Li Y.T. et al. Changes in serum adipocyte fatty acid-binding protein in women with gestational diabetes mellitus and normal pregnant women during mid- and late pregnancy. J. Diabetes Investig. 2016; 7(5): 797-804. https://dx.doi.org/10.1111/jdi.12484.
  34. Ortega-Senovilla H., Schaefer-Graf U., Meitzner K., Abou-Dakn M., Graf K., Kintscher U., Herrera E. Gestational diabetes mellitus causes changes in the concentrations of adipocyte fatty acid-binding protein and other adipocytokines in cord blood. Diabetes Care. 2011; 34(9): 2061-6. https://dx.doi.org/10.2337/dc11-0715.
  35. Li L., Lee S.J., Kook S.Y., Ahn T.G., Lee J.Y., Hwang J.Y. Serum from pregnant women with gestational diabetes mellitus increases the expression of FABP4 mRNA in primary subcutaneous human pre-adipocytes. Obstet. Gynecol. Sci. 2017; 60(3): 274-82. https://dx.doi.org/10.5468/ogs.2017.60.3.274.
  36. Ning H., Tao H., Weng Z., Zhao X. Plasma fatty acid-binding protein 4 (FABP4) as a novel biomarker to predict gestational diabetes mellitus. Acta Diabetol. 2016; 53(6): 891-8. https:/dx./doi.org/10.1007/s00592-016-0867-8.
  37. Kimber-Trojnar Z., Patro-Maiysza J., Trojnar M., Skorzynska-Dziduszko K.E., Bartosiewicz J., Oleszczuk J., Leszczynska-Gorzelak B. Fatty Acid-Binding Protein 4-An "Inauspicious" adipokine-in serum and urine of post-partum women with excessive gestational weight gain and gestational diabetes mellitus. J. Clin. Med. 2018; 7(12): 505. https://dx.doi.org/10.3390/jcm7120505.
  38. Svensson H., Wetterling L., Andersson-Hall U., Jennische E., Edén S., Holmäng A., Lönn M. Adipose tissue and body composition in women six years after gestational diabetes: factors associated with development of type 2 diabetes. Adipocyte. 2018; 7(4): 229-37.https://dx.doi.org/10.1080/21623945.2018.1521230.
  39. De Silva G.S., Desai K., Darwech M., Naim U., Jin X., Adak S. et al. Circulating serum fatty acid synthase is elevated in patients with diabetes and carotid artery stenosis and is LDL-associated. Atherosclerosis. 2019; 287: 38-45. https://dx.doi.org/10.1016/j.atherosclerosis.2019.05.016.
  40. Carroll R.G., Zasiona Z., Galvân-Pena S., Koppe E.L., Sévin D.C., Angiari S. et al. An unexpected link between fatty acid synthase and cholesterol synthesis in proinflammatory macrophage activation. J. Biol. Chem. 2018; 293(15): 5509-21. https://dx.doi.org/10.1074/jbc.RA118.001921.
  41. Wei X., Song H., Yin L., Rizzo M.G., Sidhu R., Covey D.F. et al. Fatty acid synthesis configures the plasma membrane for inflammation in diabetes. Nature. 2016; 539(7628): 294-8. https://dx.doi.org/10.1038/nature20117.
  42. Balachandiran M., Bobby Z., Dorairajan G., Jacob S.E., Gladwin V., Vinayagam V., Packirisamy R.M. Placental accumulation of triacylglycerols in gestational diabetes mellitus and its association with altered fetal growth are related to the differential expressions of proteins of lipid metabolism. Exp. Clin. Endocrinol. Diabetes. 2021; 129(11): 803-12. https://dx.doi.org/10.1055/a-1017-3182.
  43. Nicholson T., Church C., Baker D.J., Jones S.W. The role of adipokines in skeletal muscle inflammation and insulin sensitivity. J. Inflamm. (London). 2018; 15: 9. https://dx.doi.org/10.1186/s12950-018-0185-8.
  44. Vanella L., Sodhi K., Kim D.H., Puri N., Maheshwari M., Hinds T.D. et al. Increased heme-oxygenase 1 expression in mesenchymal stem cell-derived adipocytes decreases differentiation and lipid accumulation via upregulation of the canonical Wnt signaling cascade. Stem Cell Res. Ther. 2013; 4(2): 28. https://dx.doi.org/10.1186/scrt176.
  45. Hudak C.S., Gulyaeva O., Wang Y., Park S.M., Lee L., Kang C., Sul H.S. Pref-1 marks very early mesenchymal precursors required for adipose tissue development and expansion. Cell Rep. 2014; 8(3): 678-87. https://dx.doi.org/10.1016/j.celrep.2014.06.060.
  46. Hudak C.S., Sul H.S. Pref-1, a gatekeeper of adipogenesis. Front. Endocrinol. (Lausanne). 2013; 4: 79. https://dx.doi.org/10.3389/fendo.2013.00079.
  47. Wang Y.T., Chiang H.H., Huang Y.S., Hsu C.L., Yang P.J., Juan H.F., Yang W.S. A link between adipogenesis and innate immunity: RNase-L promotes 3T3-L1 adipogenesis by destabilizing Pref-1 mRNA. Cell Death Dis. 2016; 7(11): e2458. https://dx.doi.org/10.1038/cddis.2016.323.
  48. Wurst U., Ebert T., Kralisch S., Stumvoll M., Fasshauer M. Serum levels of the adipokine Pref-1 in gestational diabetes mellitus. Cytokine. 2015; 71(2): 161-4. https://dx.doi.org/10.1016/j.cyto.2014.10.015.
  49. T3-L1 adipogenesis by destabilizing Pref-1 mRNA. Cell Death Dis. 2016; 7(11): e2458. 10.1038/cddis.2016.323' target='_blank'>https://doi: 10.1038/cddis.2016.323
  50. Wurst U., Ebert T., Kralisch S., Stumvoll M., Fasshauer M. Serum levels of the adipokine Pref-1 in gestational diabetes mellitus. Cytokine. 2015; 71(2): 161-4. 10.1016/j.cyto.2014.10.015' target='_blank'>https://doi: 10.1016/j.cyto.2014.10.015

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies