Possibilities for increasing the effectiveness of assisted reproductive technology programs using cumulus-oocyte complex-induced sperm selection


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The data available in modern scientific literature on the role of cumulus cells and sperm selection using cumulus-oocyte complexes to improve the effectiveness of assisted reproductive technology (ART) programs were systematically analyzed. The review includes data from foreign articles found in the PubMed (https://pubmed. ncbi.nlm.nih.gov), which have been published over the past 10years. The cumulus cells surrounding the oocyte during natural fertilization serve as a selective barrier that allows the selection of spermatozoa with a high potential for penetration through the oocyte membranes (zona pellucida, membrane) and with the subsequent activation of a female germ cell. The review presents modern techniques that can simulate natural fertilization in infertility treatment programs using ART methods. It describes the impact of sperm selection technology using the cumulus cells on the fertility rates of male gametes and the results of in vitro fertilization programs. The review notes the contradictory results of the effectiveness of this selection on the outcomes of ART programs, which, according to some authors, depend on the manipulations and methods for preparing plates for sperm selection and on the quality of the cumulus cells derived from the spouse. Conclusion: The data accumulated to date confirm the feasibility and prospects of studying the effectiveness of various modern sperm selection techniques. Further studies are needed to assess the predictive value of the interaction of spermatozoa with cumulus cells on the effectiveness of ART programs and pregnancy outcomes. Further studies are needed to assess the predictive value of the sperm-cumulus cell interaction on the effectiveness of ART programs and pregnancy outcomes.

Full Text

Restricted Access

About the authors

Alina V. Chistyakova

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: alinadubinina_07@mail.ru
PhD Student, Department of IVF named after Professor BV. Leonov

Natalya P. Makarova

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: np_makarova@oparina4.ru
Dr. Bio. Sci., Leading Researcher, Department of IVF named after Professor BV. Leonov

Natalia N. Lobanova

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: n_lobanova@oparina4.ru
Junior Researcher, Department of IVF named after Professor BV. Leonov

Veronika Yu. Smolnikova

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: v_smolnikova@oparina4.ru
Dr. Med. Sci., Associate Professor, Leading Researcher, Department of IVF named after Professor BV. Leonov

References

  1. Szamatowicz M. Assisted reproductive technology in reproductive medicine - possibilities and limitations. Ginekol. Pol. 2016; 87(12): 820-3. https://dx.doi.org/10.5603/GP.2016.0095.
  2. Agarwal A., Baskaran S., Parekh N., Cho C.L., Henkel R., Vij S. et al. Male infertility. Lancet. 2021; 397(10271): 319-33. https://dx.doi.org/10.1016/S0140-6736(20)32667-2.
  3. Miyamoto T., Tsujimura A., Miyagawa Y., Koh E., Namiki M., Sengoku K. Male infertility and its causes in human. Adv. Urol. 2012; 2012: 384520. https://dx.doi.org/10.1155/2012/384520.
  4. World Health Organization. WHO laboratory manual for the examination and processing of human semen. 5th ed. Geneva: WHO; 2010.
  5. Wyns C., De Geyter C., Calhaz-Jorge C., Kupka M.S., Motrenko T., Smeenk J. et al. ART in Europe, 2017: results generated from European registries by ESHRE. European IVF-Monitoring Consortium (EIM) for the European Society of Human Reproduction and Embryology (ESHRE). Hum. Reprod. Open. 2021; 2021(3): hoab026. https://dx.doi.org/10.1093/hropen/hoab026.
  6. Wang C., Feng G., Shu J., Zhou H., Zhang B., Chen H. et al. Cumulus oophorus complexes favor physiologic selection of spermatozoa for intracytoplasmic sperm injection. Fertil. Steril. 2018; 109(5): 823-31. https://dx.doi.org/10.1016/j.fertnstert.2017.12.026.
  7. Meseguer M., Hickman C., Pellicer A. Better together than alone: the cumulus benefits. Fertil. Steril. 2018; 109(5): 786-7. https://dx.doi.org/10.1016/j.fertnstert.2018.02.117.
  8. Rijsdijk M., Franken D.R. Use of the capillary-cumulus oophorus model for evaluating the selection of spermatozoa. Fertil. Steril. 2007; 88(6): 1595-602. https://dx.doi.org/10.1016/j.fertnstert.2007.01.062.
  9. Дударова А.Х., Смольникова В.Ю., Макарова Н.П., Гортинова В.К., Попова А.Ю., Гамидов С.И., Калинина Е.А. Различные методики оплодотворения ооцитов и их взаимосвязь с результативностью программ вспомогательных репродуктивных технологий при лечении бесплодия. Акушерство и гинекология. 2017; 7: 96-103. https://dx.doi.org/10.18565/aig.2017.7.96-103.
  10. Knez K., Zorn B., Tomazevic T., Vrtacnik-Bokal E., Virant-Klun I. The IMSI procedure improves poor embryo development in the same infertile couples with poor semen quality: a comparative prospective randomized study. Reprod. Biol. Endocrinol. 2011; 9: 123. https://dx.doi.org/10.1186/1477-7827-9-123.
  11. Mangoli E., Khalili M.A. The beneficial role of intra cytoplasmic morphologically selected sperm injection (IMSI) in assisted reproduction. J. Reprod. Infertil. 2020; 21(1): 3-10.
  12. Оsеguеrа-Lореz I., Ruiz-Diaz S., Ramos-Ibeas Р., Perez-Cereza1es S. Nove1 techniques of sperm selection for improving IVF and ICSI outcomes. Front. Cel1 Dev. Biol. 2019; 7: 298. https://dx.doi.org/10.3389/fcell.2019.00298.
  13. Huang Z., Wells D. The human oocyte and cumulus cells relationship: new insights from the cumulus cell transcriptome. Mol. Hum. Reprod. 2010; 16(10): 715-25. https://dx.doi.org/10.1093/molehr/gaq031.
  14. Sutton M.L., Cetica P.D., Beconi M.T., Kind K.L., Gilchrist R.B., Thompson J.G. Influence of oocyte-secreted factors and culture duration on the metabolic activity of bovine cumulus cell complexes. Reproduction. 2003; 126(1): 27-34. https://dx.doi.org/10.1530/rep.0.1260027.
  15. Diaz F.J., Wigglesworth K., Eppig J.J. Oocytes determine cumulus cell lineage in mouse ovarian follicles. J. Cell Sci. 2007; 120(Pt 8): 1330-40. https://dx.doi.org/10.1242/jcs.000968.
  16. Gilchrist R.B., Lane M., Thompson J.G. Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum. Reprod. Update. 2008; 14(2): 159-77. https://dx.doi.org/10.1093/humupd/dmm040.
  17. Dragovic R.A., Ritter L.J., Schulz S.J., Amato F., Armstrong D.T., Gilchrist R.B. Role of oocyte-secreted growth differentiation factor 9 in the regulation of mouse cumulus expansion. Endocrinology. 2005; 146(6): 2798-806. https://dx.doi.org/10.1210/en.2005-0098.
  18. Hanrahan J.P., Gregan S.M., Mulsant P., Mullen M., Davis G.H., Powell R., Galloway S.M. Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries). Biol. Reprod. 2004; 70(4): 900-9. https://dx.doi.org/10.1095/biolreprod.103.023093.
  19. Di Pasquale E., Beck-Peccoz P., Persani L. Hypergonadotropic ovarian failure associated with an inherited mutation of human bone morphogenetic protein-15 (BMP15) gene. Am. J. Hum. Genet. 2004; 75(1): 106-11. https://dx.doi.org/10.1086/422103.
  20. Ouasti S., Faroni A., Kingham P.J., Ghibaudi M., Reid A.J., Tirelli N. Hyaluronic Acid (HA) receptors and the motility of schwann Cell(-Like) phenotypes. Cells. 2020; 9(6): 1477. https://dx.doi.org/10.3390/cells9061477.
  21. Jakab A., Sakkas D., Delpiano E., Cayli S., Kovanci E., Ward D. et al. Intracytoplasmic sperm injection: a novel selection method for sperm with normal frequency of chromosomal aneuploidies. Fertil. Steril. 2005; 84(6): 1665-72. https://dx.doi.org/10.1016/j.fertnstert.2005.05.068.
  22. Huszar G., Ozenci C.C., Cayli S., Zavaczki Z., Hansch E. Hyaluronic acid binding by human sperm indicates cellular maturity, viability, and unreacted acrosomal status. Fertil. Steril. 2003; 79(Suppl. 3): 1616-24. https://dx.doi.org/10.1016/s0015-0282(03)00402-3.
  23. Naknam W., Salang L., Sothornwit J., Amnatbuddee S., Seejorn K., Pongsritasana T., Sukkasame S. Effect of sperm selection method by cumulus oophorus complexes and conventional sperm preparation method on sperm quality and DNA fragmentation for assisted reproduction techonology. Eur. J. Obstet. Gynecol. Reprod. Biol. 2019; 243: 46-50. https://dx.doi.org/10.1016/j.ejogrb.2019.10.004.
  24. Gadella B.M. Dynamic regulation of sperm interactions with the zona pellucida prior to and after fertilisation. Reprod. Fertil. Dev. 2012; 25(1): 26-37. https://dx.doi.org/10.1071/RD12277.
  25. Zhuo L., Kimata K. Cumulus oophorus extracelluar matrix: its construction and regulation. Cell Struct. Funct. 2001; 26(3): 189-96. https://dx.doi.org/10.1247/csf.26.189.
  26. Franken D.R., Bastiaan H.S. Can a cumulus cell complex be used to select spermatozoa for assisted reproduction? Andrologia. 2009; 41(6): 369-76. https://dx.doi.org/10.1111/j.1439-0272.2009.00938.x.
  27. Hong S.J., Chiu P.C., Lee K.F., Tse J.M.Y., Ho P.C., Yeung W.S.B. Establishment of a capillary-cumulus model to study the selection of sperm for fertilization by the cumulus oophorus. Hum. Reprod. 2004; 19(7): 1562-9. https://dx.doi.org/10.1093/humrep/deh281.
  28. Parmegiani L., Cognigni G.E., Bernardi S., Troilo E., Ciampaglia W., Filicori M. "Physiologic ICSI": hyaluronic acid (HA) favors selection of spermatozoa without DNA fragmentation and with normal nucleus, resulting in improvement of embryo quality. Fertil. Steril. 2010; 93(2): 598-604. https://dx.doi.org/10.1016/j.fertnstert.2009.03.033.
  29. Gomez-Torres M.J., Garcia E.M., Guerrero J., Medina S., Izquierdo-Rico M.J., Gil-Izquierdo A. et al. Metabolites involved in cellular communication among human cumulus-oocyte-complex and sperm during in vitro fertilization. Reprod. Biol. Endocrinol. 2015; 13: 123. https://dx.doi.org/10.1186/s12958-015-0118-9.
  30. Primakoff P., Myles D.G. Penetration, adhesion, and fusion in mammalian sperm-egg interaction. Science. 2002; 296(5576): 2183-5. https://dx.doi.org/10.1126/science.1072029.
  31. Kim E., Yamashita M., Kimura M., Honda A., Kashiwabara S., Baba T. Sperm penetration through cumulus mass and zona pellucida. Int. J. Dev. Biol. 2008; 52(5-6): 677-82. https://dx.doi.org/10.1387/ijdb.072528ek.
  32. Zheng D., Zeng L., Yang R., Lian Y., Zhu Y.M., Liang X. et al. Intracytoplasmic sperm injection (ICSI) versus conventional in vitro fertilisation (IVF) in couples with non-severe male infertility (NSMI-ICSI): protocol for a multicentre randomised controlled trial. BMJ Open. 2019; 9(9): e030366. https://dx.doi.org/10.1136/bmjopen-2019-030366.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies