METHODS FOR IMPROVING THE OUTCOMES OF ASSISTED REPRODUCTIVE TECHNOLOGY PROGRAMS THROUGH INNOVATIVE APPROACHES TO SELECTING MALE GERM CELLS


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The effectiveness of assisted reproductive technologies (ART) depends not only on many gynecological factors, but also on the quality of the future father’s genetic material. One of the ways to increase the effectiveness of ART is to select the highest quality spermatozoa for their subsequent injection into an oocyte. The authors have carried out a systematic analysis of data on sperm selection methods for use in ART programs: selection of spermatozoa using Z potential analysis, Raman spectroscopy in IVF, microfluidic technologies, and other physical methods that are employed to isolate sperm during the intracytoplasmic sperm injection (ICSI) procedure in married couples with male factor infertility. The review includes data from the foreign articles that have been published over the past 10 years and found in PubMed (https://pubmed.ncbi.nlm.nih.gov). The paper describes the impact of various modern sperm selection techniques on the effectiveness of ARTprograms. Density gradient centrifugation that is able to select a fraction of motile and morphologically normal spermatozoa is most frequently applied in clinical practice. However, searching continues for more effective selection methods that exclude rough mechanical impact on male germ cells. Technologies based on different biophysical detection principles, such as magnetic-activated cell sorting (MACS), membrane zeta potential selection, and Raman spectroscopy, are being actively studied. There is also a large microfluidics-based group of fundamentally new methods for selecting male gametes. Conclusion: The above methods are promising and have a potential niche for application in reproductive medicine, but there is, unfortunately, the first evidence of clinical efficacy only for selection using the zeta potential, microfluidic plates, and MACS technology.

Full Text

Restricted Access

About the authors

Parvin Safail kizi GAMIDOVA

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: gamidova.parvina@yandex.ru
PhD student, Department of IVF named after Professor B.V. Leonov Moscow, Russia

Veronika Yu. SMOLNIKOVA

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: v_smolnikova@oparina4.ru
Dr. Med. Sci., Leading Researcher, Department of IVF named after Professor B.V. Leonov Moscow, Russia

Natalya P. MAKAROVA

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: np_makarova@oparina4.ru
Dr. Bio. Sci., Leading Researcher, Department of IVF named after Professor BV. Leonov Moscow, Russia

Natalia N. LOBANOVA

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: n_lobanova@oparina4.ru
Junior Researcher, Department of IVF named after Professor B.V. Leonov Moscow, Russia

References

  1. Hunter P. The long-term health risks of ART: Epidemiological data and research on animals indicate that in vitro fertilization might create health problems later in life. EMBO Rep. 2017; 18(7): 1061-4. https://dx.doi.org./10.15252/embr.201744479.
  2. Messerlian C., Gaskins A.J. Epidemiologic approaches for studying assisted reproductive technologies: design, methods, analysis and interpretation. Curr. Epidemiol. Rep. 2017; 4(2): 124-32. https://dx.doi.org./10.1007/s40471-017-0105-0.
  3. Bernardino R.L., Carrageta D.F., Sousa M., Alves M.G., Oliveira P.F. pH and male fertility: Making sense on pH homeodynamics throughout the male reproductive tract. Cell Mol. Life Sci. 2019; 76(19): 3783-800. https://dx.doi.org./10.1007/s00018-019-03170-w.
  4. Carrageta D.F., Bernardino R.L., Soveral G., Calamita G., Alves M.G., Oliveira P.F. Aquaporins and male (in)fertility: Expression and role throughout the male reproductive tract. Arch. Biochem. Biophys. 2020; 679: 108222. https://dx.doi.org./10.1016/j.abb.2019.108222.
  5. Henkel R.R., Schill W.B. Sperm preparation for ART. Reprod. Biol. Endocrinol. 2003; 1: 108. https://dx.doi.org./10.1186/1477-7827-1-108.
  6. Oshio S., Kaneko S., Iizuka R., Mohri H. Effects of gradient centrifugation on human sperm. Arch. Androl. 1987; 19(1): 85-93. https://dx.doi.org./10.3109/01485018708986804.
  7. Malvezzi H., Sharma R., Agarwal A., Abuzenadah A.M., Abu-Elmagd M. Sperm quality after density gradient centrifugation with three commercially available media: A controlled trial. Reprod. Biol. Endocrinol. 2014; 12: 121. https://dx.doi.org./10.1186/1477-7827-12-121.
  8. Brahem S., LetaiefK., Ben Ali H., Saad A., Mehdi M. Efficacy ofthe density gradient centrifugation method in eliminating sperm with aneuploidy. Andrologia. 2013; 45(3): 158-62. https://dx.doi.org./10.1111/j.1439-0272.2012.01327.x.
  9. Quinn M.M., Jalalian L., Ribeiro S., Ona K., Demirci U., Cedars M.I., Rosen M.P. Microfluidic sorting selects sperm for clinical use with reduced DNA damage compared to density gradient centrifugation with swim-up in split semen samples. Hum. Reprod. 2018; 33(8): 1388-93. https://dx.doi.org./10.1093/humrep/dey239.
  10. Takeshima T., Yumura Y., Kuroda S., Kawahara T., Uemura H., Iwasaki A. Effect of density gradient centrifugation on reactive oxygen species in human semen. Syst. Biol. Reprod. Med. 2017; 63(3): 192-8. https://dx.doi.org./10.1080/19396368.2017.1294214.
  11. Beydola T., Sharma R.K., Lee W., Agarwal A. Sperm preparation and selection techniques. In: Rizk B., Aziz N., Agarwal A., Sabanegh E., eds. Male infertility practice. New Delhi: Jaypee Brothers Medical Publishers; 2013: 244-51.
  12. Huang H., Huang P., Yao D. Enhanced efficiency of sorting sperm motility utilizing a microfluidic chip. Microsystem Technologies. 2015; 23(2): 305-12. https://dx.doi.org./10.1007/s00542-015-2495-6.
  13. Simon L., Shamsi M.B., Carrell D.T. Sperm selection techniques and their relevance to ART. In: Schatten H., ed. Human reproduction : updates and new horizons. Wiley-Blackwell; 2016: 1-43.
  14. Smith G.D., Takayama S. Application of microfluidic technologies to human assisted reproduction. Mol. Hum. Reprod. 2017; 23(4): 257-68. https://dx.doi.org./10.1093/molehr/gaw076.
  15. Marzano G., Chiriaco M.S., Primiceri E., DellAquila M.E., Ramalho-Santos J., Zara V. et al. Sperm selection in assisted reproduction: A review of established methods and cutting-edge possibilities. Biotechnol. Adv. 2020; 40: 107498. https://dx.doi.org./10.1016/j.biotechadv.2019.107498.
  16. Oseguera-Lopez I., Ruiz-Diaz S., Ramos-Ibeas P., Perez-Cerezales S. Novel techniques of sperm selection for improving IVF and ICSI outcomes. Front. Cell Dev. Biol. 2019; 7: 298. https://dx.doi.org./10.3389/fcell.2019.00298.
  17. Samuel R., Feng H., Jafek A., Despain D., Jenkins T., Gale B. Microfluidic-based sperm sorting & analysis for treatment of male infertility. Transl. Androl. Urol. 2018; 7(Suppl. 3): S336-47. https://dx.doi.org./10.21037/tau.2018.05.08.
  18. Cho B.S., Schuster T.G., Zhu X., Chang D., Smith G.D., Takayama S. Passively driven integrated microfluidic system for separation of motile sperm. Anal. Chem. 2003; 75(7): 1671-5. https://dx.doi.org./10.1021/ac020579e.
  19. Schuster T.G., Cho B., Keller L.M., Takayama S., Smith G.D. Isolation of motile spermatozoa from semen samples using microfluidics. Reprod. Biomed. Online. 2003; 7(1): 75-81. https://dx.doi.org./10.1016/s1472-6483(10)61732-4.
  20. Wu J.K., Chen P.C., Lin Y.N., Wang C.W., Pan L.C., Tseng F.G. High-throughput flowing upstream sperm sorting in a retarding flow field for human semen analysis. Analyst. 2017; 142(6): 938-44. https://dx.doi.org./10.1039/c6an02420c.
  21. Wu S., Zhang Z., Zhou X., Liu H., Xue C., Zhao G. et al. Nanomechanical sensors for direct and rapid characterization of sperm motility based on nanoscale vibrations. Nanoscale. 2017; 9(46): 18258-67. https://dx.doi.org./10.1039/c7nr03688d.
  22. Chen C.Y., Chiang T.C., Lin C.M., Lin S.S., Jong D.S., Tsai V.F.S. et al. Sperm quality assessment via separation and sedimentation in a microfluidic device. Analyst. 2013; 138(17): 4967-74. https://dx.doi.org./10.1039/c3an00900a.
  23. You J.B., Wang Y., McCallum C., Tarlan F., Hannam T., Lagunov A. et al. Live sperm trap microarray for high throughput imaging and analysis. Lab. Chip. 2019; 19(5): 815-24. https://dx.doi.org./10.1039/c8lc01204k.
  24. Kumar M., Ardekani A.M. The effect of external shear flow on the sperm motility. Soft Matter. 2019; 15(31): 6269-6277. https://dx.doi.org./10.1039/c9sm00717b.
  25. Narayanamurthy V., Jeroish Z.E., Bhuvaneshwari K.S., Bayat P., Premkumar R., Samsuri F., Yusoff M.M. Advances in passively driven microfluidics and lab-on-chip devices: a comprehensive literature review and patent analysis. RSC Adv. 2020; 10(20): 11652-80. https://dx.doi.org./10.1039/D0RA00263A.
  26. Zhang X., Khimji I., Gurkan U.A., Safaee H., Catalano P.N., Keles H.O. et al. Lensless imaging for simultaneous microfluidic sperm monitoring and sorting. Lab. Chip. 2011; 11(15): 2535-40. https://dx.doi.org./10.1039/c1lc20236g.
  27. Yan Y., Zhang B., Fu Q., Wu J., Liu R. A fully integrated biomimetic microfluidic device for evaluation of sperm response to thermotaxis and chemotaxis. Lab. Chip. 2021; 21(2): 310-18. https://dx.doi.org./10.1039/d0lc00845a.
  28. Simchi M., Riordon J., You J.B., Wang Y., Xiao S., Lagunov A. et al. Selection of high-quality sperm with thousands of parallel channels. Lab Chip. 2021; 21(12): 2464-75. https://dx.doi.org./10.1039/d0lc01182g.
  29. Rappa K.L., Rodriguez H.F., Hakkarainen G.C., Anchan R.M., Mutter G.L., Asghar W. Sperm processing for advanced reproductive technologies: Where are we today? Biotechnol. Adv. 2016; 34(5): 578-87. https://dx.doi.org./10.1016/j.biotechadv.2016.01.007.
  30. Vizziello G., Baldini A., Porcelli G., Gliozheni E., Kati K., Baldini D., Vizziello D. A new simple and quick method for sperm preparation and selection prior to ICSI procedure. Curr. Trends Clin. Embriol. 2015; 2: 101-2. https://dx.doi.org/10.11138/cce/2015.2.3.101.
  31. Baldini D., Baldini A., Silvestris E., Vizziello G., Ferri D., Vizziello D. A fast and safe technique for sperm preparation in ICSI treatments within a randomized controlled trial (RCT). Reprod. Biol. Endocrinol. 2020; 18(1): 88. https://dx.doi.org/10.1186/s12958-020-00642-8.
  32. Debnath D., Ghosh P.K., Misko V.R., Li Y., Marchesoni F., Nori F. Enhanced motility in a binary mixture of active nano/microswimmers. Nanoscale. 2020; 12(17): 9717-26. https://dx.doi.org/10.1039/d0nr01765e.
  33. Kishi K., Ogata H., Ogata S., Mizusawa Y., Okamoto E., Matsumoto Y. et al. Frequency of sperm DNA fragmentation according to selection method: Comparison and relevance of a microfluidic device and a swim-up procedure. J. Clin. Diagn. Res. 2015; 9(11): QC14-6. https://dx.doi.org/10.7860/JCDR/2015/10332.6811.
  34. Nosrati R., Vollmer M., Eamer L., San Gabriel M.C., Zeidan K., Zini A., Sinton D. Rapid selection of sperm with high DNA integrity. Lab. Chip. 2014; 14(6): 1142-50. https://dx.doi.org/10.1039/c3lc51254a.
  35. Quinn M.M., Jalalian L., Ribeiro S., Ona K., Demirci U., Cedars M.I., Rosen M.P. Microfluidic sorting selects sperm for clinical use with reduced DNA damage compared to density gradient centrifugation with swim-up in split semen samples. Hum. Reprod. 2018; 33(8): 1388-93. https://dx.doi.org/10.1093/humrep/dey239.
  36. Shirota K., Yotsumoto F., Itoh H., Obama H., Hidaka N., Nakajima K., Miyamoto S. Separation efficiency of a microfluidic sperm sorter to minimize sperm DNA damage. Fertil. Steril. 2016; 105(2): 315-21.e1. https://dx.doi.org/10.1016/j.fertnstert.2015.10.023.
  37. Yildiz K., Yuksel S. Use of microfluidic sperm extraction chips as an alternative method in patients with recurrent in vitro fertilisation failure. J. Assist. Reprod. Genet. 2019; 36(7): 1423-9. https://dx.doi.org/10.1007/s10815-019-01480-3.
  38. Yetkinel S., Kilicdag E.B., Aytac P.C., Haydardedeoglu B., Simsek E., Cok T. Effects of the microfluidic chip technique in sperm selection for intracytoplasmic sperm injection for unexplained infertility: A prospective, randomized controlled trial. J. Assist. Reprod. Genet. 2019; 36(3): 403-9. https://dx.doi.org/10.1007/s10815-018-1375-2.
  39. Feng H., Jafek A., Samuel R., Hotaling J., Jenkins T.G., Aston K.I., Gale B.K. High efficiency rare sperm separation from biopsy samples in an inertial focusing device. Analyst. 2021; 146(10): 3368-77. https://dx.doi.org/10.1039/d1an00480h.
  40. Ishijima S.A., Okuno M., Mohri H. Zeta potential of human X- and Y-bearing sperm.Int. J. Androl. 1991; 14(5): 340-7. https://dx.doi.org/10.1111/j.1365-2605.1991.tb01102.x.
  41. Kirchhof C., Hale G. Cell-to-cell transfer of glycosylphosphatidylinositolanchored membrane proteins during sperm maturation. Mol. Hum. Reprod. 1996; 2(3): 177-84. https://dx.doi.org/10.1093/molehr/2.3.177.
  42. Chan P.J., Jacobson J.D., Corselli J.U., Patton W.C. A simple zeta method for sperm selection based on membrane charge. Fertil. Steril. 2006; 85(2): 481-6. https://dx.doi.org/10.1016/j.fertnstert.2005.07.1302.
  43. Della Giovampaola C., Flori F., Sabatini L., Incerti L., La Sala G.B., Rosati F., Focarelli R. Surface of human sperm bears three differently charged CD52 forms, two of which remain stably bound to sperm after capacitation. Mol. Reprod. Dev. 2001; 60(1): 89-96. https://dx.doi.org/10.1002/mrd.1065.
  44. Khajavi N.A., Razavi S., Mardani M., Tavalaee M., Deemeh M.R., Nasr-Esfahani M.H. Can Zeta sperm selection method, recover sperm with higher DNA integrity compare to density gradient centrifugation? Iran. J. Reprod. Med. 2009; 7(2): 73-7.
  45. Kheirollahi-Kouhestani M., Razavi S., Tavalaee M., Deemeh M.R., Mardani M., Moshtaghian J., Nasr-Esfahani M.H. Selection of sperm based on combined density gradient and Zeta method may improve ICSI outcome. Hum. Reprod. 2009; 24(10): 2409-16. https://dx.doi.org/10.1093/humrep/dep088.
  46. Zarei-Kheirabadi M., Shayegan Nia, E., Tavalaee M., Deemeh M.R., Arabi M., Forouzanfar M. et al. Evaluation of ubiquitin and annexin V in sperm population selected based on density gradient centrifugation and zeta potential (DGC-Zeta). J. Assist. Reprod. Genet. 2012; 29(4): 365-71. https://dx.doi.org/10.1007/s10815-011-9689-3.
  47. Nasr Esfahani M.H., Deemeh M.R., Tavalaee M., Sekhavati M.H., Gourabi H. Zeta sperm selection improves pregnancy rate and alters sex ratio in male factor infertility patients: A double-blind, randomized clinical trial.Int. J. Fertil. Steril. 2016; 10(2): 253-60. https://dx.doi.org/10.22074/ijfs.2016.4917.
  48. Henkel R. Sperm preparation: State-of-the-art-physiological aspects and application of advanced sperm preparation methods. Asian J. Androl. 2012; 14(2): 260-9. https://dx.doi.org/10.1038/aja.2011.133.
  49. Glander H.J., Schaller J. Binding of annexin V to plasma membranes of human spermatozoa: A rapid assay for detection of membrane changes after cryostorage. Mol. Hum. Reprod. 1999; 5(2): 109-15. https://dx.doi.org/10.1093/molehr/5.2.109.
  50. Vermes I., Haanen C., Stefens-Nakken H., Reutelingsperger C. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J. Immunol. Methods. 1995; 184(1): 39-51. https://dx.doi.org/10.1016/0022-1759(95)00072-i.
  51. Grunewald S., Paasch U., Glander H.J. Enrichment of non-apoptotic human spermatozoa after cryopreservation by immunomagnetic cell sorting. Cell Tissue Bank. 2001; 2(3): 127-33. https://dx.doi.org/10.1023/A:1020188913551.
  52. Said T.M., Land J.A. Effects of advanced selection methods on sperm quality and ART outcome: A systematic review. Hum. Reprod. Update. 2011; 17(6): 719-33. https://dx.doi.org/10.1093/humupd/dmr032.
  53. Grunewald S., Miska W., Miska G., Rasch M., Reinhardt M., Glander H.J., Paasch U. Molecular glass wool filtration as a new tool for sperm preparation. Hum. Reprod. 2007; 22(5): 1405-12. https://dx.doi.org/10.1093/humrep/dem015.
  54. Muratori M., Maggi M., Spinelli S., Filimberti E., Forti G., Baldi E. Spontaneous DNA fragmentation in swim-up selected human spermatozoa during long term incubation. J. Androl. 2003; 24(2): 253-62. https://dx.doi.org/10.1002/j.1939-4640.2003.tb02670.x.
  55. Berteli T.S., Da Broi M.G., Martins W.P., Ferriani R.A., Navarro P.A. Magnetic-activated cell sorting before density gradient centrifugation improves recovery of high-quality spermatozoa. Andrology. 2017; 5(4): 776-82. https://dx.doi.org/10.1111/andr.12372.
  56. Lee T.H., Liu C.H., Shih Y.T., Tsao H.M., Huang C.C., Chen H.H., Lee M.S. Magnetic-activated cell sorting for sperm preparation reduces spermatozoa with apoptotic markers and improves the acrosome reaction in couples with unexplained infertility. Hum. Reprod. 2010; 25(4): 839-46. https://dx.doi.org/10.1093/humrep/deq009.
  57. Rawe V.Y., Alvarez C.R., Uriondo H.W., Papier S., Miasnik S., Nodar F. ICSI outcome using Annexin V columns to select non-apoptotic spermatozoa. Fertil. Steril. 2009; 92(3, Suppl.): S73-4. https://dx.doi.org/10.1016/j.fertnstert.2009.07.284.
  58. Said T., Agarwal A., Grunewald S., Rasch M., Baumann T., Kriegei C., Paasch U. Selection of nonapoptotic spermatozoa as a new tool for enhancing assisted reproduction outcomes: An in vitro model. Biol. Reprod. 2006; 74(3): 530-7. https://dx.doi.org/10.1095/biolreprod.105.046607.
  59. Zhang H., Xuan X., Yang S., Li X., Xu C., Gao X. Selection of viable human spermatozoa with low levels of DNA fragmentation from an immotile population using density gradient centrifugation and magnetic-activated cell sorting. Andrologia. 2018; 50(1): e12821. https://dx.doi.org/10.1111/and.12821.
  60. Romany L., Garrido N., Motato Y., Aparicio B., Remohi J., Meseguer M. Removal of annexin V-positive sperm cells for intracytoplasmic sperm injection in ovum donation cycles does not improve reproductive outcome: A controlled and randomized trial in unselected males. Fertil. Steril. 2014; 102(6): 1567-75.e1. https://dx.doi.org/10.1016/j.fertnstert.2014.09.001.
  61. Said T.M., Grunewald S., Paasch U., Rasch M., Agarwal A., Glander H.J. Effects of magnetic-activated cell sorting on sperm motility and cryosurvival rates. Fertil. Steril. 2005; 83(5): 1442-6. https://dx.doi.org/10.1016/j.fertnstert.2004.11.052.
  62. Gil M., Sar-Shalom V., Melendez Sivira Y., Carreras R., Checa M.A. Sperm selection using magnetic activated cell sorting (MACS) in assisted reproduction: A systematic review and meta-analysis. J. Assist. Reprod. Genet. 2013; 30(4): 479-85. https://dx.doi.org/10.1007/s10815-013-9962-8.
  63. Dirican E.K., Özgün O.D., Akarsu S., Akin K.O., Ercan Ö., Ugurlu M. et al. Clinical outcome of magnetic activated cell sorting of non-apoptotic spermatozoa before density gradient centrifugation for assisted reproduction. J. Assist. Reprod. Genet. 2008; 25(8): 375-81. https://dx.doi.org/10.1007/s10815-008-9250-1.
  64. Ziarati N., Tavalaee M., Bahadorani M., Nasr Esfahani M.H. Clinical outcomes of magnetic activated sperm sorting in infertile men candidate for ICSI. Hum Fertil (Camb). 2019; 22(2): 118-25. https://dx.doi.org/10.1080/14647273.2018.1424354.
  65. Zhuo L., Kimata K. Cumulus oophorus extracellular matrix: its construction and regulation. Cell Struct. Funct. 2001; 26(4): 189-96. https://dx.doi.org/10.1247/csf.26.189.
  66. Hasegawa J., Yanaihara A., Iwasaki S., Otsuka Y., Negishi M., Akahane T., Okai T. Reduction of progesterone receptor expression in human cumulus cells at the time of oocyte collection during IVF is associated with good embryo quality. Hum. Reprod. 2005; 20(8): 2194-200. https://dx.doi.org/10.1093/humrep/dei005.
  67. Franken D.R., Bastiaan H.S. Can a cumulus cell complex be used to select spermatozoa for assisted reproduction? Andrologia. 2009; 41(6): 369-76. https://dx.doi.org/10.1111/j.1439-0272.2009.00938.x.
  68. Naknam W., Salang L., Sothornwit J., Amnatbuddee S., Seejorn K., Pongsritasana T., Sukkasame S. Effect of sperm selection method by cumulus oophorus complexes and conventional sperm preparation method on sperm quality and DNA fragmentation for assisted reproduction techonology. Eur. J. Obstet. Gynecol. Reprod. Biol. 2019; 243: 46-50. https://dx.doi.org/10.1016/j.ejogrb.2019.10.004.
  69. Yazdanpanah Z, Nasrabadi M.H., Piravar Z.Comparison of three sperm selection methods for ICSI-DGC, Cumulus column, and incubation with supernatant product of adipose tissue-derived adult stem cells: An experimental study.Int. J. Reprod. Biomed. 2021; 19(1): 97-104. https://dx.doi.org/10.18502/ijrm.v19i1.8184.
  70. Wang C., Feng G., Shu J., Zhou H., Zhang B., Chen H. et al. Cumulus oophorus complexes favor physiologic selection of spermatozoa for intracytoplasmic sperm injection. Fertil. Steril. 2018; 109(5): 823-31. https://dx.doi.org/10.1016/j.fertnstert.2017.12.026.
  71. Fazaeli H., Faeze D., Naser K., Maryam S., Mohammad M., Mahdieh G., Reza T.Q.Introducing of a new experimental method in semen preparation: supernatant product of adipose tissue: derived mesenchymal stem cells (SPAS). JFIV Reprod. Med. Genet. Stem Cell Biol. 2016; 4(2): 178. https://dx.doi.org/10.4172/2375-4508.1000178.
  72. Li C.Y., Wu X.Y., Tong J.B., Yang X.X., Zhao J.I., Zheng Q.F. et al.Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem Cell Res Ther. 2015; 6(1): 55. https://dx.doi.org/10.1186/s13287-015-0066-5.
  73. Fazaeli H., Davoodi F., Kalhor N., Qomi R.T. The effect of supernatant product of adipose tissue derived mesenchymal stem cells and density gradient centrifugation preparation methods on pregnancy in intrauterine insemination cycles: An RCT.Int. J. Reprod. Biomed. 2018; 16(3): 199-208.
  74. Kubasek W.L., Wang Y., Thomas G.A., Patapoff T.W., Schoenwaelder K.H., Van der Sande J.H., Peticolas W.L. Raman spectra of the model B-DNA oligomer d(CGCGAATTCGCG)2 and of the DNA in living salmon sperm show that both have very similar B-type conformations. Biochemistry. 1986; 25(23): 7440-5. https://dx.doi.org/10.1021/bi00371a028.
  75. Huser T., Orme C.A., Hollars C.W., Corzett M.H., Balhorn R. Raman spectroscopy of DNA packaging in individual human sperm cells distinguishes normal from abnormal cells. J. Biophotonics. 2009; 2(5): 322-32. https://dx.doi.org/10.1002/jbio.200910012.
  76. Meister K., Schmidt D.A., Bründermann E., Havenith M. Confocal Raman microspectroscopy as an analytical tool to assess the mitochondrial status in human spermatozoa. Analyst. 2010; 135(6): 1370-4. https://dx.doi.org/10.1039/b927012d.
  77. Sânchez V., Redmann K., Wistuba J., Wübbeling F., Burger M., Oldenhof H. et al. Oxidative DNA damage in human sperm can be detected by Raman microspectroscopy. Fertil. Steril. 2012; 98(5): 1124-9.e1-3. https://dx.doi.org/10.1016/j.fertnstert.2012.07.1059.
  78. Jahmani M.Y., Hammadeh M.E., Al Smadi M.A., Baller M.K. Label-free evaluation of chromatin condensation in human normal morphology sperm using Raman spectroscopy. Reprod. Sci. 2021; 28(9): 2527-39. https://dx.doi.org/10.1007/s43032-021-00494-6.
  79. Pachetti M., D'Amico F., Zupin L., Luppi S., Martinelli M., Crovella S. et al. Strategies and perspectives for UV resonance Raman applicability in clinical analyses of human sperm RNA.Int. J. Mol. Sci. 2021; 22(23): 13134. https://dx.doi.org/10.3390/ijms222313134.
  80. Дударова А.Х., Смольникова В.Ю., Зобова А.В., Макарова Н.П., Калинина Е.А., Андреева М.Г., Наими З.М.С. Достижения и перспективы в преодолении мужского бесплодия в программах вспомогательных репродуктивных технологий с использованием различных методик селекции сперматозоидов. Акушерство и гинекология. 2016; 2: 28-34.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies