Peripheral blood NK-cells in women with unsuccessful attempts of assisted reproduction: quantity, subpopulation composition and activation markers


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective: To study the subpopulation composition of lymphocytes, quantity, subpopulation composition and activation markers of peripheral blood natural killer cells (pbNK cells) in women with unsuccessful attempts of assisted reproductive technologies (ART). Materials and methods: The main group consisted of 60 women with the previous history of one or more unsuccessful ART attempts who were subdivided into groups as patients with primary and secondary infertility. The patients with secondary infertility were divided into those who had a history of miscarriage and those who did not have it. The control group included 15 healthy fertile women. The study was carried out in the 2nd phase of the menstrual cycle (day 19-22). Subpopulation composition of peripheral blood lymphocytes, subpopulation composition of pbNK cells, their activated forms expressing receptors CD107a and NKG2D were determined using flow cytofluorimetric method. Results: The patients of the main group in comparison with the control group demonstrated a decline in the relative number of B-lymphocytes (p<0.05), number of CD16+CD107a+pbNK cells (p<0.01) and lower CD107a receptor expression (MFI) (p<0.01). The patients of the main group showed an inverse correlation between the number of pregnancies and the absolute pbNK cell count (rs=-0.55; p<0.01), as well as a direct correlation with MFI CD16+CD107a+ pbNK cells (rs=0.41; p<0.01). The threshold values associated with the absence of pregnancy were more than 0.312 k/μL for pbNK cells. The patients of the main group with primary infertility in comparison with those with secondary infertility had a decrease in the relative number of T-helpers (p<0.05), an increase in the absolute number of pbNK cells, as well as the number of NKG2D+CD56dimCD16brigh and NKG2D+CD56brighlCD16dim of pbNK cells (p<0.05). The patients who had secondary infertility and a history of miscarriage showed a decrease in the number of CD56dimCD16brighl and CD56brighlCD16dim of pbNK cells (p<0.05) and an increase in the number of CD56dimCD16dim of pbNK cells (p<0.05) compared to the patients who had no history of miscarriage. Conclusion: Depending on primary or secondary infertility as well as the presence of miscarriage in the patient’s history, the changes in pbNK cell parameters of the patients with unsuccessful ART attempts may reflect the immunological characteristics of the impaired mechanisms of implantation or termination of pregnancy in the early stages.

Full Text

Restricted Access

About the authors

Valeriya A. Zagaynova

D.O. Ott Research Institute of Obstetrics, Gynecology and Reproduction

Email: zagaynovav.al.52@mail.ru
Junior Researcher, obstetrician-gynecologist at the Department of Assisted Reproductive Technologies

Igor Yu. Kogan

D.O. Ott Research Institute of Obstetrics, Gynecology and Reproduction

Email: ikogan@mail.ru
Dr. Med. Sci., Director; Professor at the Department of Obstetrics, Gynecology and Reproduction, Faculty of Medicine

Sergey A. Selkov

D.O. Ott Research Institute of Obstetrics, Gynecology and Reproduction

Merited Scholar of the Russian Federation, Dr. Med. Sci., Professor, Head of the Department of Immunology and Intercellular Interactions

Olesya N. Bespalova

D.O. Ott Research Institute of Obstetrics, Gynecology and Reproduction

Dr. Med. Sci

Inna O. Krikheli

D.O. Ott Research Institute of Obstetrics, Gynecology and Reproduction

PhD, Senior Researcher, obstetrician-gynecologist

Valentina A. Mikhailova

D.O. Ott Research Institute of Obstetrics, Gynecology and Reproduction

PhD., Senior Researcher at the Laboratory of Intercellular Interactions, Department of Immunology and Intercellular Interactions

Alina A. Davydova

D.O. Ott Research Institute of Obstetrics, Gynecology and Reproduction

Junior Researcher at the Laboratory of Intercellular Interactions, Department of Immunology and Intercellular Interactions

Yulia P. Milyutina

D.O. Ott Research Institute of Obstetrics, Gynecology and Reproduction

PhD, Senior Researcher at Biochemistry Group

Dmitry I. Sokolov

D.O. Ott Research Institute of Obstetrics, Gynecology and Reproduction; I.P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia

Dr. Bio. Sci., Head of the Laboratory of Intercellular Interactions, Department of Immunology and Intercellular Interactions; Associate Professor at the Department of Immunology

References

  1. Practice Committee of the American Society for Reproductive Medicine. Electronic address aao, Practice Committee of the American Society for Reproductive M. Evidence-based treatments for couples with unexplained infertility: a guideline. Fertil. Steril. 2020; 113(2): 305-22. https://dx.doi.org/10.1016/j.fertnstert.2019.10.014.
  2. Bashiri A., Borick J.L. Recurrent pregnancy loss: Definitions, epidemiology, and prognosis.In: Bashiri A., Harlev A., Agarval A., eds. Recurrent pregnancy loss. Springer; 2016: 3-18. https://dx.doi.org/10.1007/978-3-319-27452-2_1.
  3. Wendt K., Wilk E., Buyny S., Buer J., Schmidt R.E., Jacobs R. Gene and protein characteristics reflect functional diversity of CD56dim and CD56bright NK cells. J. Leukoc. Biol. 2006; 80(6): 1529-41. https://dx.doi.org/10.1189/jlb.0306191.
  4. Euchner J., Sprissler J., Cathomen T., Furst D., Schrezenmeier H., Debatin K.M. et al. Natural killer cells generated from human induced pluripotent stem cells mature to CD56(bright)CD16(+)NKp80(+/-) in-vitro and express KIR2DL2/DL3 and KIR3DL1. Front. Immunol. 2021; 12: 640672. https://dx.doi.org/10.3389/fimmu.2021.640672.
  5. Castriconi R., Carrega P., Dondero A., Bellora F., Casu B., Regis S. et al. Molecular mechanisms directing migration and retention of natural killer cells in human tissues. Front. Immunol. 2018; 9: 2324. https://dx.doi.org/10.3389/fimmu.2018.02324.
  6. Michel T., Poli A., Cuapio A., Briquemont B., Iserentant G., Ollert M. et al. Human CD56bright NK cells: An Update. J. Immunol. 2016; 196(7): 2923-31. https://dx.doi.org/10.4049/jimmunol.1502570.
  7. Poli A., Michel T., Theresine M., Andres E., Hentges F., Zimmer J. CD56bright natural killer (NK) cells: an important NK cell subset. Immunology. 2009; 126(4): 458-65. https://dx.doi.org/10.1111/j.1365-2567.2008.03027.x.
  8. Kolanska K., Suner L., Cohen J., Ben Kraiem Y., Placais L., Fain O. et al. Proportion of cytotoxic peripheral blood natural killer cells and T-cell large granular lymphocytes in recurrent miscarriage and repeated implantation failure: case-control study and meta-analysis. Arch. Immunol. Ther. Exp. (Warsz.). 2019; 67(4): 225-36. https://dx.doi.org/10.1007/s00005-019-00546-5.
  9. Azargoon A., Mirrasouli Y., Shokrollahi Barough M., Barati M., Kokhaei P. The state of peripheral blood natural killer cells and cytotoxicity in women with recurrent pregnancy loss and unexplained infertility. Int. J. Fertil. Steril. 2019; 13(1): 12-7. https://dx.doi.org/10.22074/ijfs.2019.5503.
  10. Toth B., Vomstein K., Togawa R., Bottcher B., Hudalla H., Strowitzki T. et al. The impact of previous live births on peripheral and uterine natural killer cells in patients with recurrent miscarriage. Reprod. Biol. Endocrinol. 2019; 17(1): 72. https://dx.doi.org/10.1186/s12958-019-0514-7.
  11. Seshadri S., Sunkara S.K. Natural killer cells in female infertility and recurrent miscarriage: a systematic review and meta-analysis. Hum. Reprod. Update. 2014; 20(3): 429-38. https://dx.doi.org/10.1093/humupd/dmt056.
  12. Zhang H., Huang C., Chen X., R., Bottcher B., Hudalla H., Strowitzki T. et al. The number and cytotoxicity and the expression of cytotoxicity-related molecules in peripheral natural killer (NK) cells do not predict the repeated implantation failure (RIF) for the in vitro fertilization patients. Genes Dis. 2020; 7(2): 283-9. https://dx.doi.org/10.1016/j.gendis.2019.03.005.
  13. Wang Q., Li T.C., Wu Y.P., Cocksedge K.A., Fu Y.S., Kong Q.Y., Yao S.Z. Reappraisal of peripheral NK cells in women with recurrent miscarriage. Reprod. Biomed. Online. 2008; 17(6): 814-9. 10.1016/s1472-6483(10)60410-5.
  14. Ho Y.K., Chen H.H., Huang C.C., Lee C.I., Lin P.Y., Lee M.S., Lee T.H. Peripheral CD56( + )CD16(+) NK cell populations in the early follicular phase are associated with successful clinical outcomes of intravenous immunoglobulin treatment in women with repeated implantation failure. Front. Endocrinol. (Lausanne). 2019; 10: 937. https://dx.doi.org/10.3389/fendo.2019.00937.
  15. Ebina Y., Nishino Y., Deguchi M., Maesawa Y., Nakashima Y., Yam a da H. Natural killer cell activity in women with recurrent miscarriage: Etiology and pregnancy outcome. J. Reprod. Immunol. 2017; 120: 42-7. https://dx.doi.org/10.1016/j.jri.2017.04.005.
  16. Fukui A., Funamizu A., Fukuhara R., Shibahara H. Expression of natural cytotoxicity receptors and cytokine production on endometrial natural killer cells in women with recurrent pregnancy loss or implantation failure, and the expression of natural cytotoxicity receptors on peripheral blood natural killer cells in pregnant women with a history of recurrent pregnancy loss. J. Obstet. Gynaecol. Res. 2017; 43(11): 1678-86. https://dx.doi.org/10.1111/jog.13448.
  17. Dons'koi B.V., Osypchuk D.V., Chernyshov V.P., Khazhylenko K.G. Expression of natural cytotoxicity receptor NKp46 on peripheral blood natural killer cells in women with a history of recurrent implantation failures. J. Obstet. Gynaecol. Res. 2021 ;47(3): 1009-15. https://dx.doi.org/10.1111/jog.14631.
  18. Alter G., Malenfant J.M., Altfeld M. CD107a as a functional marker for the identification of natural killer cell activity. J. Immunol. Methods. 2004; 294(1-2): 15-22. https://dx.doi.org/10.1016/j.jim.2004.08.008.
  19. Ghiringhelli F., Menard C., Terme M., Flament C., Taieb J., Chaput N. et al. CD4+CD25+ regulatory T. cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. J. Exp. Med. 2005; 202(8): 1075-85. https://dx.doi.org/10.1084/jem.20051511.
  20. Wang W.J., Hao C.F., Yi L., Yin G.J., Bao S.H., Qiu L.H., Lin Q.D. Increased prevalence of T. helper 17 (Th17) cells in peripheral blood and decidua in unexplained recurrent spontaneous abortion patients. J. Reprod. Immunol. 2010; 84(2): 164-70. https://dx.doi.org/10.1016/j.jri.2009.12.003.
  21. Robertson S.A., Care A.S., Moldenhauer L.M. Regulatory T. cells in embryo implantation and the immune response to pregnancy. J. Clin. Invest. 2018; 128(10): 4224-35. https://dx.doi.org/10.1172/JCI122182.
  22. LeBien T.W., Tedder T.F. B. lymphocytes: how they develop and function. Blood. 2008; 112(5): 1570-80. https://dx.doi.org/10.1182/blood-2008-02-078071.
  23. Esteve-Sole A., Luo Y., Vlagea A., Deya-Martinez A., Yague J., Plaza-Martin A.M. et al. B. regulatory cells: players in pregnancy and early life. Int. J. Mol. Sci. 2018; 19(7): 2099. https://dx.doi.org/10.3390/ijms19072099.
  24. Koushaeian L., Ghorbani F., Ahmadi M., Eghbal-Fard S., Zamani M., Danaii S. et al. The role of IL-10-producing B. cells in repeated implantation failure patients with cellular immune abnormalities. Immunol. Lett. 2019; 214: 16-22. https://dx.doi.org/10.1016/j.imlet.2019.08.002.
  25. Tu W., Li Y., Ding Q., Wang L., Frempong S.T., Ruan J. et al. Association between peripheral CD19+ B. cells and reproductive outcome in women with recurrent implantation failure. Clin. Lab. 2020; 66(1). https://dx.doi.org/10.7754/Clin.Lab.2019.190510.
  26. Triggianese P., Perricone C., Perricone R., De Carolis C. Prolactin and natural killer cells: evaluating the neuroendocrine-immune axis in women with primary infertility and recurrent spontaneous abortion. Am. J. Reprod. Immunol. 2015; 73(1): 56-65. https://dx.doi.org/10.1111/aji.12335.
  27. Strobel L., Vomstein K., Kyvelidou C., Hofer-Tollinger S., Feil K., Kuon R.J. et al. Different background: natural killer cell profiles in secondary versus primary recurrent pregnancy loss. J. Clin. Med. 2021; 10(2): 194. https://dx.doi.org/10.3390/jcm10020194.
  28. Zhang Y., Huang C., Lian R., Xu J., Fu Y., Zeng Y., Tu W. The low cytotoxic activity of peripheral blood NK cells may relate to unexplained recurrent miscarriage. Am. J. Reprod. Immunol. 2021; 85(6): e13388. https://dx.doi.org/10.1111/aji.13388.
  29. Zhang Y., Zhao A., Wang X., Shi G., Jin H., Lin Q. Expressions of natural cytotoxicity receptors and NKG2D on decidual natural killer cells in patients having spontaneous abortions. Fertil. Steril. 2008; 90(5): 1931-7. https://dx.doi.org/10.1016/j.fertnstert.2007.08.009.
  30. Takeyama R., Fukui A., Mai C., Yamamoto M., Saeki S., Yamaya A., Shibahara H. Co-expression of NKp46 with activating or inhibitory receptors on, and cytokine production by, uterine endometrial NK cells in recurrent pregnancy loss. J. Reprod. Immunol. 2021; 145: 103324. https://dx.doi.org/10.1016/j.jri.2021.103324.
  31. Siemaszko J., Marzec-Przyszlak A., Bogunia-Kubik K. NKG2D natural killer cell receptor-A short description and potential clinical applications. Cells. 2021;10(6): 1420. https://dx.doi.org/10.3390/cells10061420.
  32. Schmiedel D., Mandelboim O. NKG2D ligands-critical targets for cancer immune escape and therapy. Front. Immunol. 2018; 9: 2040. https://dx.doi.org/10.3389/fimmu.2018.02040.
  33. Hedlund M., Stenqvist A.C., Nagaeva O., Kjellberg L., Wulff M., Baranov V., Mincheva-Nilsson L. Human placenta expresses and secretes NKG2D ligands via exosomes that down-modulate the cognate receptor expression: evidence for immunosuppressive function. J. Immunol. 2009;183(1): 340-51. https://dx.doi.org/10.4049/jimmunol.0803477.
  34. Mincheva-Nilsson L., Nagaeva O., Chen T., Stendahl U., Antsiferova J., Mogren I. et al. Placenta-derived soluble MHC class I. chain-related molecules down-regulate NKG2D receptor on peripheral blood mononuclear cells during human pregnancy: a possible novel immune escape mechanism for fetal survival. J. Immunol. 2006; 176(6): 3585-92. https://dx.doi.org/10.4049/jimmunol.176.6.3585.
  35. Basu S., Pioli P.A., Conejo-Garcia J., Wira C.R., Sentman C.L. Estradiol regulates MICA expression in human endometrial cells. Clin. Immunol. 2008; 129(2): 325-32. https://dx.doi.org/10.1016/j.clim.2008.07.005.
  36. Cox S.T., Laza-Briviesca R., Pearson H., Soria B., Gibson D., Gomez S. et al. Umbilical cord blood plasma contains soluble NKG2D ligands that mediate loss of natural killer cell function and cytotoxicity. Eur. J. Immunol. 2015; 45(8): 2324-34. https://dx.doi.org/10.1002/eji.201444990.
  37. Zhao Y., Chen N., Yu Y., Zhou L., Niu C., Liu Y. et al. Prognostic value of MICA/В. in cancers: a systematic review and meta-analysis. Oncotarget. 2017; 8(56): 96384-95. https://dx.doi.org/10.18632/oncotarget.21466.
  38. Hizem S., Mtiraoui N., Massaoudi S., Fortier C., Boukouaci W., Kahina A. et al. Polymorphisms in genes coding for the NK-cell receptor NKG2D and its ligand MICA in recurrent miscarriage. Am. J. Reprod. Immunol. 2014; 72(6): 577-85. https://dx.doi.org/10.1111/aji.12314.
  39. Abdian Asl A., Vaziri Nezamdoust F., Fesahat F., Astani A., Barati M., Raee P., Asadi-Saghandi A. Association between rs1049174 NKG2D gene polymorphism and idiopathic recurrent spontaneous abortion in Iranian women: A case-control study. J. Obstet. Gynaecol. 2021; 41(5): 774-8. https://dx.doi.org/10.1080/01443615.2020.1798906.
  40. Perera Molligoda Arachchige A.S. Human NK cells: from development to effector functions. Innate Immun. 2021; 27(3): 212-29. https://dx.doi.org/10.1177/17534259211001512.
  41. Dogra P., Rancan C., Ma W., Toth M., Senda T., Carpenter D.J. et al. Tissue determinants of human NK cell development, function, and residence. Cell. 2020; 180(4): 749-763.e13. https://dx.doi.org/10.1016/j.cell.2020.01.022.
  42. Amand M., Iserentant G., Poli A., Sleiman M., Fievez V., Sanchez I.P. et al. Human CD56(dim)CD16(dim) cells as an individualized natural killer cell subset. Front. Immunol. 2017; 8: 699. https://dx.doi.org/10.3389/fimmu.2017.00699.
  43. Gamliel M., Goldman-Wohl D., Isaacson B., Gur C., Stein N., Yamin R. et al. Trained memory of human uterine NK cells enhances their function in subsequent pregnancies. Immunity. 2018; 48(5): 951-962.e5. https://dx.doi.org/10.1016/j.immuni.2018.03.030.
  44. Huang X., Wang L., Zhao S., Liu H., Chen S., Wu L. et al. Pregnancy induces an immunological memory characterized by maternal immune alterations through specific genes methylation. Front. Immunol. 2021; 12: 686676. https://dx.doi.org/10.3389/fimmu.2021.686676.
  45. Goldman-Wohl D., Gamliel M., Mandelboim O., Yagel S. Learning from experience: cellular and molecular bases for improved outcome in subsequent pregnancies. Am. J. Obstet. Gynecol. 2019; 221(3): 183-93. https://dx.doi.org/10.1016/j.ajog.2019.02.037.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies