The role of vitamin D and omega-3 polyunsaturated fatty acid deficiencies in the pathogenesis of polycystic ovary syndrome

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Polycystic ovary syndrome (PCOS) occurs in every 5 reproductive-aged women. Women with PCOS are frequently found to have carbohydrate metabolism disorders, overweight, and obesity. The pathogenesis of PCOS is associated with both insulin resistance and a proinflammatory state, oxidative stress, which support the development of metabolic disorders. The role of micronutrients in both the correction of inflammation and oxidative stress and the processes of steroidogenesis, epigenetic regulation, lipid metabolism, and glucose and insulin transport is known. Widespread deficiencies of vitamin D and omega-3 polyunsaturated fatty acids (PUFAs) are the most common conditions associated with the insufficient intake of these micronutrients in the population. Correction of deficiency conditions with the use of vitamins and dietary supplements in women with PCOS is reflected in numerous new studies investigating the benefits of these treatments. This review summarizes the latest data of randomized controlled trials, meta-analyses, and systematic reviews that analyze the efficacy of vitamin D and omega-3 PUFAs in the treatment of PCOS. Conclusion: Using the drugs that affect steroidogenesis, insulin resistance, and lipid metabolism and correcting inflammation and oxidative stress in combination with basic treatment and therapeutic lifestyle changes can prevent adverse reproductive and metabolic outcomes in women with PCOS. The data of the presented studies suggest that the use of vitamin D and omega-3 PUFAs may be a useful adjunctive treatment for PCOS.

Full Text

Restricted Access

About the authors

Elena I. Abashova

D.O. Ott Research Institute of Obstetrics, Gynecology, and Reproductology

Email: abashova@yandex.ru
PhD, Senior Researcher, Department of Gynecology and Endocrinology

Maria I. Yarmolinskaya

D.O. Ott Research Institute of Obstetrics, Gynecology, and Reproductology; I.I. Mechnikov North-Western State Medical University, Ministry of Health of Russia

Email: m.yarmolinskaya@gmail.com
Professor of RAS, Dr. Med. Sci., Professor, Head of the Department of Gynecology and Endocrinology, Head of Center “Diagnostics and treatment of endometriosis”; Professor at the Department of Obstetrics and Gynecology

References

  1. Teede H.J., Misso M.L., Costello M.F., Dokras A., Laven J., Moran L. et al.; International PCOS Network. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Fertil. Steril. 2018; 110(3): 364-79. https://dx.doi.org/10.1016/j.fertnstert.2018.05.004.
  2. Министерство здравоохранения Российской Федерации. Клинические рекомендации. Синдром поликистозных яичников. 2021.
  3. Greenwood E.A., Pasch L.A., Cedars M.I., Legro R.S., Eisenberg E., Huddleston H.G.; Eunice Kennedy Shriver National Institute of Child Health and Human Development Reproductive Medicine Network. Insulin resistance is associated with depression risk in polycystic ovary syndrome. Fertil. Steril. 2018; 110(1): 27 34. https://dx.doi.org/10.1016/j.fertnstert.2018.03.009.
  4. Абашова Е.И., Ярмолинская М.И. Фенотипы СПЯ у женщин репродуктивного возраста: клиника, диагностика, стратегия терапии. Акушерство и гинекология. 2021; 12 (приложение): 4-12.
  5. Lim S.S., Hutchison S.K., Van Ryswyk E., Norman R.J., Teede H.J., Moran L.J. Lifestyle changes in women with polycystic ovary syndrome. Cochrane Database Syst. Rev. 2019; 3(3): CD007506. https://dx.doi.org/10.1002/14651858.CD007506.pub4.
  6. Holick M.F. The vitamin D deficiency pandemic: approaches for diagnosis, treatment and prevention. Rev. Endocr. Metab. Disord. 2017; 18(2): 153-65. https://dx.doi.org/10.1007/s11154-017-9424-1.
  7. Суплотова Л.А., Авдеева В.А., Пигарова Е.А., Рожинская Л.Я., Трошина Е.А. Дефицит витамина D в России: первые результаты регистрового неинтервенционного исследования частоты дефицита и недостаточности витамина D в различных географических регионах страны. Проблемы эндокринологии. 2021; 67(2): 84-92. https://dx.doi.org/10.14341/probl12736.
  8. Пигарова Е.А., Рожинская Л.Я., Катамадзе Н.Н., Поваляева А.А., Трошина Е.А. Распространенность дефицита и недостаточности витамина D среди населения, проживающего в различных регионах Российской Федерации: результаты 1-го этапа многоцентрового поперечного рандомизированного исследования. Остеопороз и остеопатии. 2020; 23(4): 4-12. https://dx.doi.org/10.14341/osteo12701.
  9. Stark K.D., Van Elswyk M.E., Higgins M.R., Weatherford C.A., Salem N. Jr. Global survey of the omega-3 fatty acids, docosahexaenoic acid and eicosapentaenoic acid in the blood stream of healthy adults. Prog. Lipid Res. 2016; 63: 132-52. https://dx.doi.org/10.1016/j.plipres.2016.05.001.
  10. Калинченко С.Ю., Соловьев Д.О., Аветисян Л.А., Белов Д.А., Парамонов С.А., Нижник А.Н. Распространенность дефицита омега-3 жирных кислот в различных возрастных группах. Вопросы диетологии. 2018; 8(1): 11-6. https://dx.doi.org/10.20953/2224-5448-2018-1-11-16.
  11. Bikle D.D. Vitamin D: production, metabolism and mechanisms of action. In: Feingold K.R., Anawalt B., Boyce A. et al., eds. Endotext. South Dartmouth (MA): MDText.com, Inc.; December 31, 2021.
  12. Charoenngam N., Holick M.F. Immunologic effects of vitamin D on human health and disease. Nutrients. 2020; 12(7): 2097. https://dx.doi.org/10.3390/nu12072097.
  13. Дедов И.И., Мельниченко Г.А., Мокрышева Н.Г., Пигарова Е.А., Поваляева А.А., Рожинская Л.Я., Белая Ж.Е., Дзеранова Л.К., Каронова Т.Л., Суплотова Л.А., Трошина Е.А. Проект федеральных клинических рекомендаций по диагностике, лечению и профилактике дефицита витамина D. Остеопороз и остеопатии. 2021; 24(4): 4-26. https://dx.doi.org/10.14341/osteo12937.
  14. Sirbe C., Rednic S., Grama A., Pop T.L. An update on the effects of vitamin D on the immune system and autoimmune diseases. Int. J. Mol. Sci. 2022; 23(17):9784. https://dx.doi.org/10.3390/ijms23179784.
  15. Davis E.M., Peck J.D., Hansen K.R., Neas B.R., Craig L.B. Associations between vitamin D levels and polycystic ovary syndrome phenotypes. Minerva Endocrinol. 2019; 44(2): 176-84. https://dx.doi.org/10.23736/S0391-1977.18.02824-9.
  16. Shan C., Zhu Y.C., Yu J., Zhang Yi., Wang Y.Y., Lu N. et al. Low serum 25-hydroxyvitamin D levels are associated with hyperandrogenemia in polycystic ovary syndrome: A gross-sectional study. Front. Endocrinol. (Lausanne). 2022; 13: 894935. https://dx.doi.org/10.3389/fendo.2022.894935.
  17. Kakoly N.S., Khomami M.B., Joham A.E., Cooray S.D., Misso M.L., Norman R.J. et al. Ethnicity, obesity and the prevalence of impaired glucose tolerance and type 2 diabetes in PCOS: a systematic review and meta-regression. Hum. Reprod. Update. 2018; 24(4): 455-67. https://dx.doi.org/10.1093/humupd/dmy007.
  18. Абашова Е.И., Ярмолинская М.И., Булгакова О.Л., Мишарина Е.В., Ткаченко Н.Н., Бородина В.Л. Анализ показателей углеводного профиля у женщин репродуктивного возраста с различными фенотипами синдрома поликистозных яичников. Проблемы репродукции. 2022; 28(4): 31-8. https://dx.doi.org/10.17116/repro20222804131.
  19. Morgante G., Darino I., Spano A., Luisi S., Luddi A., Piomboni P. et al. PCOS physiopathology and vitamin D deficiency: biological insights and perspectives for treatment. J. Clin. Med. 2022; 11: 4509. https://dx.doi.org/10.3390/jcm11154509.
  20. Shi X.Y., Huang A.P., Xie D.W., Yu X.L. Association of vitamin D receptor gene variants with polycystic ovary syndrome: a meta-analysis. BMC Med. Genet. 2019; 20(1): 32. https://dx.doi.org/10.1186/s12881-019-0763-5.
  21. Aravindhan S., Almasoody M.F.M., Selman N.A., Andreevna A.N., Ravali S., Mohammadi P. et al. Vitamin D receptor gene polymorphisms and susceptibility to type 2 diabetes: evidence from a meta-regression and metaanalysis based on 47 studies. J. Diabetes Metab. Disord. 2021; 20(1): 845-67. https://dx.doi.org/10.1007/s40200-020-00704-z.
  22. Garg D., Grazi R., Lambert-Messerlian G.M., Merhi Z. Correlation between follicular fluid levels of sRAGE and vitamin D in women with PCOS. J. Assist. Reprod. Genet. 2017; 34(11): 1507-13. https://dx.doi.org/10.1007/s10815-017-1011-6.
  23. Абашова Е.И., Ярмолинская М.И., Булгакова О.Л., Мишарина Е.В. Особенности липидного профиля при различных фенотипах синдрома поликистозных яичников у женщин репродуктивного возраста. Журнал акушерства и женских болезней. 2020; 69(6): 7-16. https://dx.doi.org/10.17816/JOWD6967-16.
  24. Merhi Z., Buyuk E., Cipolla M.J. Advanced glycation end products alter steroidogenic gene expression by granulosa cells: an effect partially reversible by vitamin D. Mol. Hum. Reprod. 2018; 24(6): 318-26. https://dx.doi.org/10.1093/molehr/gay014.
  25. Maktabi M., Chamani M., Asemi Z. The effects of vitamin D supplementation on metabolic status of patients with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial. Horm. Metab. Res. 2017; 49(7): 493-8. https://dx.doi.org/10.1055/s-0043-107242.
  26. Al-Bayyari N., Al-Domi H., Zayed F., Hailat R., Eaton A. Androgens and hirsutism score of overweight women with polycystic ovary syndrome improved after vitamin D treatment: A randomized placebo controlled clinical trial. Clin. Nutr. 2021; 40(3): 870-8. https://dx.doi.org/10.1016/j.clnu.2020.09.024.
  27. Bernasconi A.A., Wilkin A.M., Roke K., Ismail A. Development of a novel database to review and assess the clinical effects of EPA and DHA omega-3 fatty acids. Prostaglandins Leukot. Essent. Fatty Acids. 2022; 183: 102458. https://dx.doi.org/10.1016/j.plefa.2022.102458.
  28. Harris W.S., Tintle N.L., Imamura F., Qian F., Korat A.V.A., Marklund M. et al. Blood n-3 fatty acid levels and total and cause-specific mortality from 17 prospective studies. Nat. Commun. 2021; 12(1): 2329. https://dx.doi.org/10.1038/s41467-021-22370-2.
  29. Zhuang P., Zhang Y., He W., Chen X., Chen J., He L. et al. Dietary fats in relation to cotal and cause-specific mortality in a prospective cohort of 521 120 individuals with 16 years of follow-up. Circ. Res. 2019; 124(5): 757-68. https://dx.doi.org/10.1161/CIRCRESAHA.118.314038.
  30. Khan S.U., Lone A.N., Khan M.S., Virani S.S., Blumenthal R.S., Nasir K. et al. Effect of omega-3 fatty acids on cardiovascular outcomes: a systematic review and meta-analysis. EClinicalMedicine. 2021; 38: 100997. https://dx.doi.org/10.1016/j.eclinm.2021.100997.
  31. Gutierrez S., Svahn S.L., Johansson M.E. Effects of omega-3 fatty acids on immune cells. Int. J. Mol. Sci. 2019; 20(20): 5028. https://dx.doi.org/10.3390/ijms20205028.
  32. Middleton P., Gomersall J.C., Gould J.F., Shepherd E., Olsen S.F., Makrides M. Omega-3 fatty acid addition during pregnancy. Cochrane Database Syst. Rev. 2018; 11(11): CD003402. https://dx.doi.org/10.1002/14651858.CD003402.pub3.
  33. Chiang N., Serhan C.N. Specialized pro-resolving mediator network: an update on production and actions. Essays Biochem. 2020; 64(3): 443-62. https://dx.doi.org/10.1042/EBC20200018.
  34. Mason R.P., Libby P., Bhatt D.L. Emerging mechanisms of cardiovascular protection for the omega-3 fatty acid eicosapentaenoic acid. Arterioscler. Thromb. Vasc. Biol. 2020; 40(5): 1135-47. https://dx.doi.org/10.1161/ATVBAHA.119.313286.
  35. Wang R., Feng Y., Chen J., Chen Y., Ma F. Association between polyunsaturated fatty acid intake and infertility among American women aged 20-44 years. Front. Public Health. 2022; 10: 938343. https://dx.doi.org/10.3389/fpubh.2022.938343.
  36. Chiu Y.H., Karmon A.E., Gaskins A.J., Arvizu M., Williams P.L., Souter I. et al. Serum omega-3 fatty acids and treatment outcomes among women undergoing assisted reproduction. Hum. Reprod. 2018; 33(1): 156-65. https://dx.doi.org/10.1093/humrep/dex335.
  37. Lanza I.R., Blachnio-Zabielska A., Johnson M.L., Schimke J.M., Jakaitis D.R., Lebrasseur N.K. et al. Influence of fish oil on skeletal muscle mitochondrial energetics and lipid metabolites during high-fat diet. Am. J. Physiol. Endocrinol. Metab. 2013; 304(12): E1391-403. https://dx.doi.org/10.1152/ajpendo.00584.2012.
  38. Salek M., Clark C.C.T., Taghizadeh M., Jafarnejad S. N-3 fatty acids as preventive and therapeutic agents in attenuating PCOS complications. EXCLI J. 2019; 18: 558-75. https://dx.doi.org/10.17179/excli2019-1534.
  39. Muredda L., K($czyriska M.A., Zaibi M.S., Alomar S.Y., Trayhurn P. IL-1 p and TNFa inhibit GPR120 (FFAR4) and stimulate GPR84 (EX33) and GPR41 (FFAR3) fatty acid receptor expression in human adipocytes: implications for the anti-inflammatory action of n-3 fatty acids. Arch. Physiol. Biochem. 2018; 124(2): 97-108. https://dx.doi.org/10.1080/13813455.2017.1364774.
  40. Yang K., Zeng L., Bao T., Ge J. Effectiveness of Omega-3 fatty acid for polycystic ovary syndrome: a systematic review and meta-analysis. Reprod. Biol. Endocrinol. 2018; 16(1): 27. https://dx.doi.org/10.1186/s12958-018-0346-x.
  41. Tosatti J.A.G., Alves M.T., Candido A.L., Reis F.M., Araujo V.E., Gomes K.B. Influence of n-3 fatty acid supplementation on inflammatory and oxidative stress markers in patients with polycystic ovary syndrome: a systematic review and meta-analysis. Br. J. Nutr. 2021; 125(6): 657-68. https://dx.doi.org/10.1017/S0007114520003207.
  42. Barbe A., Bongrani A., Mellouk N., Estienne A., Kurowska P., Grandhaye J. et al. Mechanisms of adiponectin action in fertility: an overview from gametogenesis to gestation in humans and animal models in normal and pathological conditions. Int. J. Mol. Sci. 2019; 20(7): 1526. https://dx.doi.org/10.3390/ijms20071526.
  43. Shahnazi V., Zaree M., Nouri M., Mehrzad-Sadaghiani M., Fayezi S., Darabi M. et al. Influence of w-3 fatty acid eicosapentaenoic acid on IGF-1 and COX-2 gene expression in granulosa cells of PCOS women. Iran. J. Reprod. Med. 2015; 13(2): 71-8.
  44. Jo S., Harris W.S., Tintle N.L., Park Y. Association between Omega-3 index and hyperglycemia depending on body mass index among adults in the United States. nutrients. 2022; 14(20): 4407. https://dx.doi.org/10.3390/nu14204407.
  45. Беспалова О.Н., Жернакова Т.С., Шенгелия М.О., Загайнова В.А., Пачулия О.В., Коган И.Ю. Микронутриентный статус женщин с нарушением репродуктивной функции в Северо-Западном регионе Российской Федерации. Акушерство и гинекология. 2022; 10: 93-102. https://dx.doi.org/10.18565/aig.2022.10.93-102.
  46. Lu L., Li X., Lv L., Xu Y., Wu B., Huang C. Associations between omega-3 fatty acids and insulin resistance and body composition in women with polycystic ovary syndrome. Front. Nutr. 2022; 9: 1016943. https://dx.doi.org/10.3389/fnut.2022.1016943.
  47. Единые санитарно-эпидемиологические и гигиенические требования к товарам, подлежащим санитарно-эпидемиологическому надзору (контролю). Глава II, раздел 1, Приложение 5.
  48. Bernasconi A.A., Wiest M.M., Lavie C.J., Milani R.V., Laukkanen J.A. Effect of Omega-3 dosage on cardiovascular outcomes: an updated meta-analysis and meta-regression of interventional trials. Mayo Clin. Proc. 2021; 96(2): 304-13. https://dx.doi.org/10.1016/j.mayocp.2020.08.034.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies