Перспективы применения экзомного секвенирования для решения проблем в репродукции человека (часть I)


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Появление новых генетических технологий является ключевым аспектом прогресса в развитии молекулярной медицины. Благодаря им существенно расширяются возможности генетических лабораторных тестов в клинической практике, происходят изменения в терминологии. Наметился четкий переход от изучения индивидуальных генов и их вариантов (мутаций) к исследованиям экзома для анализа патогеномики, поиску биомаркеров, досимптоматической профилактике и персонализированному лечению различных заболеваний человека. В обзоре (часть 1) представлены собственные и литературные данные о применении технологии NGS, экзомном секвенировании, генетическом и клиническом генетическом паспорте, сложностях, особенностях и перспективах внедрения новых подходов в практическую медицину. Заключение: Разработка научных основ точной медицины для изучения, диагностики и лечения моно-генных болезней, а также олигогенных, мультифакториальных и инфекционных заболеваний будет определяться эффективностью использования NGS-технологий с учетом современных алгоритмов анализа и классических генетических понятий экспрессивности и пенетрантности.

Полный текст

Доступ закрыт

Об авторах

Олег Сергеевич Глотов

ФГБНУ «Научно-исследовательский институт акушерства, гинекологии и репродуктологии имени Д.О. Отта»; ФГБУ «Детский научно-клинический центр инфекционных болезней Федерального медико-биологического агентства»

Email: olglotov@mail.ru
к.б.н., с.н.с. лаборатории пренатальной диагностики наследственных и врожденных заболеваний человека; руководитель НИО экспериментальной медицинской вирусологии, молекулярной генетики и биобанкинга

Александр Николаевич Чернов

ФГБНУ «Научно-исследовательский институт акушерства, гинекологии и репродуктологии имени Д.О. Отта»

Email: al.chernov@mail.ru
к.б.н., н.с. лаборатории пренатальной диагностики наследственных и врожденных заболеваний человека

Андрей Сергеевич Глотов

ФГБНУ «Научно-исследовательский институт акушерства, гинекологии и репродуктологии имени Д.О. Отта»

Email: anglotov@mail.ru
д.б.н., руководитель отдела геномной медицины

Владислав Сергеевич Баранов

ФГБНУ «Научно-исследовательский институт акушерства, гинекологии и репродуктологии имени Д.О. Отта»

Email: vsbar40@mail.ru
д.м.н., чл. -корр. РАМН, врач-генетик высшей категории, главный специалист Санкт-Петербурга по медицинской генетике, главный научный сотрудник отдела геномной медицины

Список литературы

  1. Баранов В.С., ред. Эволюция предиктивной медицины. СПб.: Эко-Вектор; 2021. 359 с.
  2. International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature. 2004; 431(7011): 931-45. https//dx.doi.org/10.1038/nature03001.
  3. Genome Reference Consortium. Human Genome Overview. Available at: https://www.ncbi.nlm.nih.gov/grc/human
  4. Степанов В.А. Этногеномика населения Северной Евразии. Томск: Печатная мануфактура; 2002. 244 с.
  5. Глотов О.С., Глотов А.С., Тарасенко О.А., Иващенко Т.Э., Баранов В.С. Исследование функционально-значимого полиморфизма ACE, AGTR1, ENOS, MTHFR, MTRR и APOE генов в популяции Северо-Западного региона России. Экологическая генетика. 2004; 2(3): 32-5.
  6. Barbitoff Y.A., Khmelkova D.N., Pomerantseva E.A., Slepchenkov A.V., Zubashenko N.A., Mironova I.V. et al. Expanding the Russian allele frequency reference via cross-laboratory data integration: insights from 6,096 exome samples. MedRxiv. 2021. https://dx.doi.org/10.1101/2021.11.02.21265801.
  7. Shikov A., Tsay V., Fedyakov M., Eismont Y., Rudnik A., Urasov S. et al. The application of nanopore sequencing for variant calling on the human mitochondrial DNA. Bio. Comm. 2021; 66(2): 109-23. https://dx.doi.org/10.21638/spbu03.2021.202.
  8. Morganti S., Tarantino P., Ferraro E., DAmico P., Viale G., Trapani D. et al. Chapter 8. Role of next-generation sequencing technologies in personalized medicine. In: Pravettoni G., Triberti S., eds. P5 eHealth: An Agenda for the Health Technologies of the Future. Springer: Cham; 2020; 125-45. https://dx.doi.org/10.1007/978-3-030-27994-3_8.
  9. Glotov O.S., Romanova O.V., Eismont Y.A., Sarana A.M., Scherbak S.G., Kuzmich E.V. et al. Comparative analysis of NGS and Sanger sequencing methods for HLA typing at a Russian university clinic. Cell. Ther. Transpl. 2018; 7(4): 72-82. https//dx.doi.org/10.18620/ctt-1866-8836-2018-7-4-72-82.
  10. Glotov A.S., Kazakov S.V., Zhukova E.A., Alexandrov A.V., Glotov O.S., Pakin V.S. et al. Targeted next-generation sequencing (NGS) of nine candidate genes with custom AmpliSeq in patients and a cardiomyopathy risk group. Clin. Chim. Acta. 2015; 446: 132-40. https://dx.doi.org/10.1016/j.cca.2015.04.014.
  11. Majewski J., Schwartzentruber J., Lalonde E., Montpetit A., Jabado N. What can exome sequencing do for you? J. Med. Genet. 2011; 48(9): 580-9. https//dx.doi.org/10.1136/jmedgenet-2011-100223.
  12. Guo Y., Dai Y., Yu H., Zhao S., Samuels D.C., Shyr Y. Affiliations expand Improvements and impacts of GRCh38 human reference on high throughput sequencing data analysis. Genomics. 2017; 109(2): 83-90. https//dx.doi.org/10.1016/j.ygeno.2017.01.005.
  13. Barbitoff Y.A., Polev D.E., Shcherbakova I.V., Serebryakova E.A., Kiselev A.M., Kostareva A.A. et al. Systematic dissection of biases in whole-exome and whole-genome sequencing reveals major determinants of coding sequence coverage. Sci. Rep. 2020; 10: 2057. https://dx.doi.org/10.1038/s41598-020-59026-y.
  14. Suwinski P., Ong C.K., Ling M.H.T., Poh Y.M., Khan A.M., Ong H.S. Advancing personalized medicine through the application of whole exome sequencing and big data analytics. Front. Genet. 2019; 10: 49. https//dx.doi.org/10.3389/fgene.2019.00049.
  15. Boycott K.M., Rath A., Chong J.X., Hartley T., Alkuraya F.S., Baynam G. et al. International cooperation to enable the diagnosis of all rare genetic diseases. Am. J. Hum. Genet. 2017; 100(5): 695-705. https//dx.doi.org/10.1016/j.ajhg.2017.04.003.
  16. Ferreira C.R. The burden of rare diseases. Am. J. Med. Genet. A. 2019; 179(6): 885-92. https//dx.doi.org/10.1002/ajmg.a.61124.
  17. Turro E., Astle W.J., Megy K., Graf S., Greene D., Shamardina O. et al. Whole-genome sequencing of patients with rare diseases in a national health system. Nature. 2020; 583(7814): 96-102. https//dx. doi.org/10.1038/s41586-020-2434-2.
  18. Федяков М.А., Кенис В.М., Мельченко Е.В., Федякова Н.С., Щербак С.Г., Федяков Д.А. и др. Анаугсетическая дисплазия: клиника, молекулярно-генетическая диагностика и лечение. В. кн.: Масленникова А.Б., ред. Молекулярно-биологические технологии в медицинской практике. Новосибирск:Академиздат; 2021; вып. 32: 81-92.
  19. Lightbody G., Haberland V., Browne F., Taggart L., Zheng H., Parkes E. et al. Review of applications of high-throughput sequencing in personalized medicine: barriers and facilitators of future progress in research and clinical application. Brief Bioinform. 2019; 20(5): 1795-811. https//dx.doi.org/10.1093/bib/bby051.
  20. Hofmann A.L., Behr J., Singer J., Kuipers J., Beisel C., Schraml P. et al. Detailed simulation of cancer exome sequencing data reveals differences and common limitations of variant callers. BMC Bioinformatics. 2017; 18: 8. https//dx.doi.org/10.1186/s12859-016-1417-7.
  21. Wang Q., Shashikant C.S., Jensen M., Altman N.S., Girirajan S. Novel metrics to measure coverage in whole exome sequencing datasets reveal local and global non-uniformity. Sci. Rep. 2017; 7(1): 885. https//dx.doi.org/10.1038/s41598-017-01005-x.
  22. Richards S., Aziz N., Bale S., Bick D., Das S., Gastier-Foster J. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015; 17(5): 405-24. https//dx.doi.org/10.1038/gim.2015.30.
  23. Рыжкова О. П., Кардымон О.Л., Прохор чу к Е.Б., Коновалов Ф.А., Масленников А.Б., Степанов В.А. и др. Руководство по интерпретации данных, полученных методами массового параллельного секвенирования (MPS). Медицинская генетика. 2017; 16(7): 4-17.
  24. Рыжкова О. П., Кардымон О.Л., Прохор чу к Е.Б., Коновалов Ф.А., Масленников А.Б., Степанов В.А. и др. Руководство по интерпретации данных последовательности ДНК человека, полученных методами массового параллельного секвенирования (MPS) (редакция 2018, версия 2). Медицинская генетика. 2019; 18(2): 3-23. https://dx.doi.org/10.25557/2073-7998.2019.02.3-23.
  25. Инге-Вечтомов С.Г. Генетика с основами селекции. СПб.: Изд-во Н-Л; 2010. 720 с.
  26. Barbitoff Y.A., Bezdvornykh I.V., Polev D.E., Serebryakova E.A., Glotov A.S., Glotov O.S. et al. Catching hidden variation: systematic correction of reference minor alleles in clinical variant calling. Genet. Med. 2018; 20(3): 360-4. https://dx.doi.org/10.1038/gim.2017.168.
  27. Barbitoff Y.A., Serebryakova E.A., Nasykhova Y.A., Predeus A. V., Polev D.E., Shuvalova A.R. et al. Identification of novel candidate markers of type 2 diabetes and obesity in Russia by exome sequencing with a limited sample size. Genes. 2018; 9(8): 415. https://dx.doi.org/10.3390/genes9080415.
  28. Glotov O.S., Serebryakova E.A., Turkunova M.S., Efimova O.A., Glotov A.S., Barbitoff Y.A. et al. Whole-exome sequencing for monogenic diabetes in Russian children reveals wide spectrum of genetic variants in MODY-related and unrelated genes. Mol. Med. Rep. 2019; 20(6): 4905-14. https//dx.doi.org/10.3892/mmr.2019.10751.
  29. Fedyakov M.A., Veleslavova O.E., Romanova O.V., Shubik Yu.V., Urazov S.P., Rud S.D., Sarana A.M., Scherbak S.G., Glotov O.S. New frameshift mutation found in PKP2 gene in arrhythmogenic right ventricular cardiomyopathy/dysplasia: a family case study. Vestnik of Saint Petersburg University. Medicine. 2019; 14(1): 3-13. https://dx.doi.org/10.21638/11701/spbu10.2019.101.
  30. Miroshnikova V.V., Romanova O.V., Ivanova O.N., Fedyakov M.A., Panteleeva A.A., Barbitoff Y.A. et al. Identification of novel variants in the LDLR gene in Russian patients with familial hypercholesterolemia using targeted sequencing. Biomed. Rep. 2021; 14(1): 15. https://dx.doi.org/10.3892/BR.2020.1391.
  31. Баранов В.С., Баранова Е.В., Иващенко Т.Э., Асеев М.В. Геном человека и гены «предрасположенности» (Введение в предиктивную медицину). СПб.: Интермедика; 2000. 272 с.
  32. Agarwal S., Moorchung N. Modifier genes and oligogenic disease. J. Nippon Med. Sch. 2005; 72(6): 326-34. https//dx.doi.org/10.1272/jnms.72.326.
  33. Kousi M., Katsanis N. Genetic modifiers and oligogenic inheritance. Cold Spring Harb. Perspect. Med. 2015; 5(6): a017145. https//dx.doi.org/10.1101/cshperspect.a017145.
  34. Alaverdian D.A., Fedyakov M., Polennikova E., Ivashchenko T., Shcherbak S., Urasov S. et al. X-linked and autosomal dominant forms of the ichthyosis in coinheritance. Drug Metab. Pers. Ther. 2019; 34(4): /j/dmdi.2019.34. issue-4/dmpt-2019-0008/dmpt-2019-0008.xml. https//dx.doi.org/10.1515/dmpt-2019-0008.
  35. Abul-Husn N.S., Manickam K., Jones L.K., Wright E.A., Hartzel D.N., Gonzaga-Jauregui C. et al. Genetic identification of familial hypercholesterolemia within a single U.S. health care system. Science. 2016; 354(6319): aaf7000. https//dx.doi.org/10.1126/science.aaf7000.
  36. Khera A.V., Chaffin M., Aragam K.G., Haas M.E., Roselli C., Choi S.H. et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat. Genet. 2018; 50(9): 1219-24. https//dx.doi.org/10.1038/s41588-018-0183-z.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© ООО «Бионика Медиа», 2022

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах