Uterine microbiome and immunohistochemical markers of chronic endometritis in recurrent pregnancy loss


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective: To identify the genera of microorganisms that inhabit endometrium of healthy women and patients with recurrent pregnancy loss (RPL), as well as the genera of microorganisms causing chronic endometritis (CE). Materials and methods: The endometrial microbiome was examined in 14 women with RPL and 15 fertile healthy women by sequencing the next generation 16S rRNA gene. In addition, correlation between CE, CD138, CXCL13 markers and members of various endometrial bacterial genera was analyzed. Results: In patients of both groups, the most abundant bacterial genus in the endometrial samples was Lactobacillus (30.3% in patients with RPL, 29.3% in fertile patients). Statistically significant differences between the groups were found only for the bacterial genera Brevibacillus and Corynebacterium 1. The mean relative abundance of Brevibacillus was higher in the healthy fertile women [0.11 (0;0.3)%] than in the women with RPL [0 (0;0)% (p=0.008)]. The relative abundance of Corynebacterium 1 was 0 (0;0)% and 0.07 (0;0.13)% (p=0.002), respectively. The marker CD 138 was associated with the presence of the bacteria of genus Pseudorhodoferax. The presence of marker CXCL13 was associated with bacteria of genera Alistipes, Butyricimonas, Dialister, Leuconostoc, Neisseria, Parabacteroides, Phascolarctobacterium, Prevotella, Ruminococcaceae, Sutterella, Sphingobium, Subdoligranulum. Conclusion: Simultaneous analysis of the endometrial microbiome and CE markers can optimize preconception care in women with high perinatal risk.

Full Text

Restricted Access

About the authors

Viktoriya V. Barinova

Rostov State Medical University; Clinic of Professor Bushtyreva LLC

Email: victoria-barinova@yandex.ru
PhD, Teaching Assistant at the Department of Obstetrics and Gynecology No. 1 Rostov-on-Don

Natalya B. Kuznetsova

Rostov State Medical University; Clinic of Professor Bushtyreva LLC

Email: lauranb@inbox.ru
Dr. Med. Sci., Professor at the Center for Simulation Training Rostov-on-Don

Irina O. Bushtyreva

Clinic of Professor Bushtyreva LLC

Email: kio4@mail.ru
Dr. Med. Sci., Professor, Director Rostov-on-Don

Vasilisa V. Dudurich

Medical Genetics Center Serbalab

Email: vdudurich@cerbalab.ru
Biologist-Geneticist, Director for Development

Alexander E. Shatalov

Kuban State Medical University

Email: shatal321@mail.ru
1st year resident at the Department of Obstetrics, Gynecology and Perinatology of the FPK and PPS

References

  1. Wade W. Unculturable bacteria--the uncharacterized organisms that cause oral infections. J. R. Soc. Med. 2002; 95(2): 81-3. https://dx.doi.org/10.1258/jrsm.95.2.81.
  2. Wilson M.J., Weightman A.J., Wade W.G. Applications of molecular ecology in the characterisation of uncultured microorganisms associated with human disease. Rev. Med. Microbiol. 1997; 8: 91-101.
  3. Oliver J.D. Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiol. Rev. 2010; 34(4): 415-25. https://dx.doi.org/10.1111/j.1574-6976.2009.00200.x.
  4. Giudice L.C. Challenging dogma: the endometrium has a microbiome with functional consequences! Am. J. Obstet. Gynecol. 2016; 215(6): 682-3. https://dx.doi.org/10.1016/j.ajog.2016.09.085.
  5. Кузнецова Н.Б., Буштырева И.О., Дыбова В.С., Баринова В.В., Полев Д.Е., Асеев М.В., Дудурич В.В. Микробиом влагалища у беременных с преждевременным разрывом плодных оболочек в сроке от 22 до 28 недель беременности. Акушерство и гинекология. 2021; 1: 94-102. [Kuznetsova N.B., Bushtyreva I.O., Dybova V.S., Barinova V.V., Polev D.E., Aseev M.V., Dudurich V.V. Vaginal microbiome in pregnant women with preterm prelabor rupture of membranes at 22-28 weeks' gestation. Obstetrics and Gynecology. 2021; 1: 94-102. (in Russian)]. https://dx.doi.org/10.18565/aig.2021.L94-102.
  6. Баринова В.В., Кузнецова Н.Б., Буштырева И.О., Соколова К.М., Полев Д.Е., Дудурич В.В. Микробиом верхних отделов женской репродуктивной системы. Акушерство и гинекология. 2020; 3: 12-7. [Barinova V.V., Kuznetsova N.B., Bushtyreva I.O., Sokolova K.M., Polev D.E., Dudurich V.V. The microbiome of the upper female reproductive tract. Obstetrics and Gynecology. 2020; 3: 12-7. (in Russian)]. https://dx.doi.org/10.18565/aig.2020.3.12-17.
  7. Баринова В.В., Кузнецова Н.Б., Буштырева И.О., Оксенюк О.С., Дудурич В.В., Шаталов А.Е. Микробиом эндометрия при многократных неудачах вспомогательных репродуктивных технологий и у здоровых женщин: где норма и где патология? Акушерство и гинекология. 2021; 6: 105-14. [Barinova V.V., Kuznetsova N.B., Bushtyreva I.O., Oksenyuk O.S., Dudurich V.V., Shatalov A.E. Endometrial microbiome in women with and without a history of repeated failures of assisted reproductive technology: what are norm and pathology? Obstetrics and Gynecology. 2021; 6: 105-14. (in Russian)]. https://dx.doi.org/10.18565/aig.2021.6.105-114.
  8. Perez-Munoz M.E., Arrieta M.C., Ramer-Tait A.E., Walter J. A critical assessment of the ‘sterile womb’ and ‘in utero colonization’ hypotheses: implications for research on the pioneer infant microbiome. Microbiome. 2017; 5: 48. https://dx.doi.org/10.1186/s40168-017-0268-4.
  9. Hooper L.V., Littman D.R., Macpherson A.J. Interactions between the microbiota and the immune system. Science. 2012; 336(6086): 1268-73. https://dx.doi.org/10.1126/science.1223490.
  10. Кебурия Л.К., Смольникова В.Ю., Припутневич Т.В., Муравьева В.В., Трофимов Д.Ю., Шубина Е.С., Кочеткова Т.О. Микробиота полости матки и неудачи имплантации: есть ли связь? Акушерство и гинекология. 2021; 7: 133-43. [Keburiya L.K., Smol’nikova V.Yu., Priputnevich T.V., Murav’eva V.V., Trofimov D.Yu., Shubina E.S., Kochetkova T.O. Uterine microbiota and implantation failure: is there a link? Obstetrics and Gynecology. 2021; 7: 133-43. (in Russian)]. https://dx.doi.org/10.18565/aig.2021.7.133-143.
  11. Кебурия Л.К., Смольникова В.Ю., Припутневич Т.В., Муравьева В.В., Калинина Е.А. Микробиота эндометрия и репродуктивный исход в программах вспомогательных репродуктивных технологий. Акушерство и гинекология. 2020; 4: 166-72. [Keburia L.K., Smolnikova V.Yu., Priputnevich T.V., Muravyeva V.V., Kalinina E.A. Endometrial microbiota and reproductive outcome in assisted reproductive technology program. Obstetrics and Gynecology. 2020; 4: 166-72. (in Russian)]. https://dx.doi.org/10.18565/aig.2020.4.166-172.
  12. Verstraelen H., Vilchez-Vargas R., Desimpel F., Jauregui R., Vankeirsbilck N., Weyers S. et al. Characterisation of the human uterine microbiome in non-pregnant women through deep sequencing of the V1-2 region of the 16S rRNA gene. Peer J. 2016; 4: e1602. https://dx.doi.org/10.7717/peerj.1602.
  13. Liu Y., Ko E.Y., Wong K.K., Chen X., Cheung W.C., Law T.S. et al. Endometrial microbiota in infertile women with and without chronic endometritis as diagnosed using a quantitative and reference range-based method. Fertil. Steril. 2019; 112(4): 707-17.e1. https://dx.doi.org/10.1016/j.fertnstert.2019.05.015.
  14. Callahan B.J., McMurdie P.J., Rosen M.J., Han A.W., Johnson A.J., Holmes S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods. 2016; 13(7): 581-3. https://dx.doi.org/10.1038/nmeth.3869.
  15. Wang Q., Garriy G.M., Tiedje J.M., Cole J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007; 73(16): 5261-7. https://dx.doi.org/10.1128/AEM.00062-07.
  16. Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013; 41(Database issue): D590-6. https://dx.doi.org/10.1093/nar/gks1219.
  17. Moreno I., Codoner F.M., Vilella F., Valbuena D., Martinez-Blanch J.F., Jimenez-Almazdn J. et al. Evidence that the endometrial microbiota has an effect on implantation success or failure. Am. J. Obstet. Gynecol. 2016; 215(6): 684-703. https://dx.doi.org/10.1016/j.ajog.2016.09.075.
  18. Mitchell C.M., Haick A., Nkwopara E., Garcia R., Rendi M., Agnew K. et al. Colonization of the upper genital tract by vaginal bacterial species in nonpregnant women. Am. J. Obstet. Gynecol. 2015; 212(5): 611.e1-9. https://dx.doi.org/10.1016/j.ajog.2014.11.043.
  19. Fang R.L., Chen L.X., Shu W.S., Yao S.Z., Wang S.W., Chen Y.Q. Barcoded sequencing reveals diverse intrauterine microbiomes in patients suffering with endometrial polyps. Am. J. Transl. Res. 2016; 8(3): 1581-92.
  20. Winters A.D., Romero R., Gervasi M.T., Gomez-Lopez N., Tran M.R., Garcia-Flores V. et al. Does the endometrial cavity have a molecular microbial signature? Sci. Rep. 2019; 9(1): 9905. https://dx.doi.org/10.1038/s41598-019-46173-0.
  21. Chen C., Song X., Wei W., Zhong H., Dai J., Lan Z. et al. The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases. Nat Commun. 2017; 8(1): 875. https://dx.doi.org/10.1038/s41467-017-00901-0.
  22. Baker J.M., Chase D.M., Herbst-Kralovetz M.M. Uterine microbiota: residents, tourists, or invaders? Front. Immunol. 2018; 9: 208. https://dx.doi.org/10.3389/fimmu.2018.00208.
  23. Moreno I., Codoner F.M., Vilella F., Valbuena D., Martinez-Blanch J.F., Jimenez-Almazdn J. et al. Evidence that the endometrial microbiota has an effect on implantation success or failure. Am. J. Obstet. Gynecol. 2016; 215(6): 684-703. https://dx.doi.org/10.1016/j.ajog.2016.09.075.
  24. Jose B., Carlos S. Implantation failure of endometrial origin: what is new? Curr. Opin. Obstet. Gynecol. 2018; 30(4): 229-36. https://dx.doi.org/10.1097/ GC0.0000000000000468.
  25. de Goffau M.C., Lager S., Sovio U., Gaccioli F., Cook E., Peacock S.J. et al. Human placenta has no microbiome but can contain potential pathogens. Nature. 2019; 572(7769): 329-34. https://dx.doi.org/10.1038/s41586-019-1451-5.
  26. Lager S., de Goffau M.C., Sovio U., Peacock S.J., Parkhill J., Charnock-Jones D.S., Smith G.C.S. Detecting eukaryotic microbiota with single-cell sensitivity in human tissue. Microbiome. 2018; 6(1): 151. https://dx.doi.org/10.1186/s40168-018-0529-x.
  27. Lauder A.P., Roche A.M., Sherrill-Mix S., Bailey A., Laughlin A.L., Bittinger K. et al. Comparison of placenta samples with contamination controls does not provide evidence for a distinct placenta microbiota. Microbiome. 2016; 4(1): 29. https://dx.doi.org/10.1186/s40168-016-0172-3.
  28. Leiby JS., McCormick K., Sherrill-Mix S., Clarke E.L., Kessler L.R., Taylor L.J. et al. Lack of detection of a human placenta microbiome in samples from preterm and term deliveries. Microbiome. 2018; 6(1): 196. https://dx.doi.org/10.1186/s40168-018-0575-4.
  29. Aagaard K., Ma J., Antony K.M., Ganu R., Petrosino J., Versalovic J. The placenta harbors a unique microbiome. Sci. Transl. Med. 2014; 6(237): 237ra65. https://dx.doi.org/10.1126/scitranslmed.3008599.
  30. Ходжаева З.С., Горина К.А., Тимошина И.В., Припутневич Т.В. Программирование здоровья новорожденного - роль материнского микробиома. Акушерство и гинекология: новости, мнения, обучение. 2019; 7(4): 61-5. [Khodzhaeva Z.S., Gorina K.A., Timoshina I.V., Priputnevich T.V. Infant health programming - the role of maternal microbiome. Obstetrics and Gynecology: News, Opinions, Training. 2019; 7(4): 61-5. (in Russian)]. https://dx.doi.org/10.24411/2303-9698-2019-14004.
  31. Riganelli L., Iebba V., Piccioni M., Illuminati I., Bonfiglio G., Neroni B. et al. Structural variations of vaginal and endometrial microbiota: hints on female infertility. Front. Cell. Infect. Microbiota. 2020; 10: 350. https://dx.doi.org/10.3389/fcimb.2020.00350.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies