Complement system dysregulation in patients with preeclampsia


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective: To investigate the role of the complement system in the development and progression of preeclampsia. Materials and methods: A study group comprised 25patients with preeclampsia (13 moderate, 12 severe) and a comparison group of 22 relatively healthy women with uncomplicated pregnancies. Serum levels of complement factors (C1q, C3, C5a, Factor B, Factor H, Factor I, Factor D) were determined before treatment and in the neonatal cord blood immediately after delivery using the Multiplex method (Merck complement panels, Germany). Results: Patients with moderate preeclampsia had significantly elevated levels of C1q, C3, FB, FH, and a less marked increase in FI and FD. A paradoxical reduction in all these factors was seen in patients with severe preeclampsia. C5a levels increased with the progression of preeclampsia, culminating in severe preeclampsia. The changes of neonatal cord blood complement factors overlapped with maternal ones but were less pronounced, with a signif icant increase in C5a in the severe preeclampsia subgroup. Conclusion: The high concentrations of C1q, C3, C5a, FB, FD in pregnant women with preeclampsia suggest complement activation through the classical and alternative pathways, accompanied by a compensatory increase in regulatory FH and FI to limit excessive complement activation. In severe preeclampsia, continuing complement activation is associated with consumption hypocomplementemia.

Full Text

Restricted Access

About the authors

Iraida S. Sidorova

I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University)

Email: sidorovais@yandex.ru
Dr. Med. Sci., Professor, Academician of the RAS, Merited Scholar of the Russian Federation, Department of Obstetrics and Gynecology № 1, N.V. Sklifosovsky Institute of Clinical Medicine

Natalya A. Nikitina

I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University)

Email: natnikitina@list.ru
Dr. Med. Sci., Professor at the Department of Obstetrics and Gynecology № 1, N.V. Sklifosovsky Institute of Clinical Medicine

Mikhail B. Ageev

I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University)

Email: mikhaageev@yandex.ru
Ph.D., Teaching Assistant at the Department of Obstetrics and Gynecology №1, N.V. Sklifosovsky Institute of Clinical Medicine

Albert A. Kokin

Maternity Hospital affiliated to the V.V. Veresaev Clinical Hospital of Moscow City Health Department

Email: alberkokin@yandex.ru
Head of the Department of Anesthesiology and Intensive Care

Marina A. Kir'yanova

I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University)

Postgraduate Student at the Department of Obstetrics and Gynecology №1

References

  1. Melchiorre K., Giorgione V., Thilaganathan B. The placenta and preeclampsia: villain or victim? Am. J. Obstet. Gynecol. 2021 Mar 24; S0002-9378(20)31198-4. https://dx.doi.org/10.1016/j.ajog.2020.10.024.
  2. Collier A.Y., Smith L.A., Karumanchi S.A. Review of the immune mechanisms of preeclampsia and the potential of immune modulating therapy. Hum. Immunol. 2021; 82(5): 362-70. https://dx.doi.org/10.1016/j.humimm.2021.01.004.
  3. Harmon A.C., Cornelius D.C., Amaral L.M., Faulkner J.L., Cunningham M.W. Jr, Wallace K., LaMarca B. The role of inflammation in the pathology of preeclampsia. Clin. Sci. (Lond). 2016; 130(6): 409-19. https://dx.doi.org/10.1042/CS20150702.
  4. Regal J.F., Burwick R.M., Fleming S.D. The complement system and preeclampsia. Curr. Hypertens. Rep. 2017; 19(11): 87. https://dx.doi.org/10.1007/s11906-017-0784-4.
  5. Girardi G., Lingo J.J., Fleming S.D., Regal J.F. Essential role of complement in pregnancy: from implantation to parturition and beyond. Front. Immunol. 2020; 11: 1681. https://dx.doi.org/10.3389/fimmu.2020.01681.
  6. Pierik E., Prins J.R., van Goor H., Dekker G.A., Daha M.R., Seelen M.A.J., Scherjon S.A. Dysregulation of complement activation and placental dysfunction: a potential target to treat preeclampsia? Front. Immunol. 2020; 10: 3098. https://dx.doi.org/10.3389/fimmu.2019.03098.
  7. Ling M., Murali M. Analysis of the complement system in the clinical immunology laboratory. Clin. Lab. Med. 2019; 39(4): 579-90. https://dx.doi.org/10.1016/j.cll.2019.07.006.
  8. Burwick R.M., Feinberg B.B. Complement activation and regulation in preeclampsia and HELLP syndrome. Am. J. Obstet. Gynecol. 2020 Sep 25; S0002-9378(20)31129-7. https://dx.doi.org/10.1016/j.ajog.2020.09.038.
  9. Jia K., Ma L., Wu S., Yang W. Serum levels of complement factors C1q, Bb, and H. in normal pregnancy and severe pre-eclampsia. Med. Sci. Monit. 2019; 25: 7087-93. https://dx.doi.org/10.12659/MSM.915777.
  10. He Y., Xu B., Song D., Yu F., Chen Q., Zhao M. Expression of the complement system's activation factors in plasma of patients with early/late-onset severe pre-eclampsia. Am. J. Reprod. Immunol. 2016; 76(3): 205-11. https://dx.doi.org/10.1111/aji.12541.
  11. Richani K., Soto E., Romero R., Espinoza J., Chaiworapongsa T., Nien J.K. et al. Normal pregnancy is characterized by systemic activation of the complement system. J. Matern. Fetal Neonatal Med. 2005; 17(4): 239-45. https://dx.doi.org/10.1080/14767050500072722.
  12. Derzsy Z., Prohaszka Z., Rigo J. Jr, Fust G., Molvarec A. Activation of the complement system in normal pregnancy and preeclampsia. Mol. Immunol. 2010; 47(7-8): 1500-6. https://dx.doi.org/10.1016/j.molimm.2010.01.021.
  13. He Y.D., Xu B.N., Song D., Wang Y.Q., Yu F., Chen Q., Zhao M.H. Normal range of complement components during pregnancy: A prospective study. Am. J. Reprod. Immunol. 2020; 83(2): e13202. https://dx.doi.org/10.1111/aji.13202.
  14. Ueda M., Sato Y., Horie A., Tani H., Miyazaki Y., Okunomiya A. et al. Endovascular trophoblast expresses CD59 to evade complement-dependent cytotoxicity. Mol. Cell. Endocrinol. 2019; 490: 57-67. https://dx.doi.org/10.1016/j.mce.2019.04.006.
  15. Girardi G. Complement activation, a threat to pregnancy. Semin. Immunopathol. 2018; 40(1): 103-11. https://dx.doi.org/10.1007/s00281-017-0645-x.
  16. Regal J.F., Gilbert J.S., Burwick R.M. The complement system and adverse pregnancy outcomes. Mol. Immunol. 2015; 67(1): 56-70. https://dx.doi.org/10.1016/j.molimm.2015.02.030.
  17. Стрижаков А.Н., Тимохина Е.В., Федюнина И.А., Игнатко И.В., Асланов А.Г., Богомазова И.М. Почему преэклампсия трансформируется в HELLP-синдром? Роль системы комплемента. Акушерство и гинекология. 2020; 5: 52-7. [Strizhakov A.N., Timokhina E.V., Fedyunina I.A., Ignatko I.V., Aslanov A.G., Bogomazova I.M. Why does preeclampsia transform into hellp syndrome? the role of the complement system. Obstetrics and Gynecology. 2020; 5: 52-7. (in Russian)]. https://dx.doi.org/10.18565/aig.2020.5.52-57.
  18. Agostinis C., Tedesco F., Bulla R. Alternative functions of the complement protein C1q at embryo implantation site. J. Reprod. Immunol. 2017; 119: 74-80. https://dx.doi.org/10.1016/j.jri.2016.09.001.
  19. Agostinis C., Stampalija T., Tannetta D., Loganes C., Vecchi Brumatti L., De Seta F. et al. Complement component C1q as potential diagnostic but not predictive marker of preeclampsia. Am. J. Reprod. Immunol. 2016; 76(6): 475-81. https://dx.doi.org/10.1111/aji.12586.
  20. Agostinis C., Bulla R., Tripodo C., Gismondi A., Stabile H., Bossi F. et al. An alternative role of C1q in cell migration and tissue remodeling: contribution to trophoblast invasion and placental development. J. Immunol. 2010; 185(7): 4420-9. https://dx.doi.org/10.4049/jimmunol.0903215.
  21. Elvington M., Liszewski M.K., Atkinson J.P. Evolution of the complement system: from defense of the single cell to guardian of the intravascular space. Immunol. Rev. 2016; 274(1): 9-15. https://dx.doi.org/10.1111/imr.12474.
  22. Hoffman M.C., Rumer K.K., Kramer A., Lynch A.M., Winn V.D. Maternal and fetal alternative complement pathway activation in early severe preeclampsia. Am. J. Reprod. Immunol. 2014; 71(1): 55-60. https://dx.doi.org/10.1111/aji.12162.
  23. Lynch A.M., Murphy J.R., Byers T., Gibbs R.S., Neville M.C., Giclas P.C. et al. Alternative complement pathway activation fragment Bb in early pregnancy as a predictor of preeclampsia. Am. J. Obstet. Gynecol. 2008; 198(4): 385.e1-9. https://dx.doi.org/10.1016/j.ajog.2007.10.793.
  24. Loirat C., Fremeaux-Bacchi V. Atypical hemolytic uremic syndrome. Orphanet. J. Rare Dis. 2011; 6: 60. https://dx.doi.org/10.1186/1750-1172-6-60.
  25. Burwick R.M., Fichorova R.N., Dawood H.Y., Yamamoto H.S., Feinberg B.B. Urinary excretion of C5b-9 in severe preeclampsia: tipping the balance of complement activation in pregnancy. Hypertension. 2013; 62(6): 1040-5. https://dx.doi.org/10.1161/HYPERTENSI0NAHA.113.01420.
  26. Denny K.J., Coulthard L.G., Finnell R.H., Callaway L.K., Taylor S.M., Woodruff T.M. Elevated complement factor C5a in maternal and umbilical cord plasma in preeclampsia. J. Reprod. Immunol. 2013; 97(2): 211-6. https://dx.doi.org/10.1016/j.jri.2012.11.006.
  27. Ma Y., Kong L.R., Ge Q., Lu Y.Y., Hong M.N., Zhang Y. et al. Complement 5a-mediated trophoblasts dysfunction is involved in the development of preeclampsia. J. Cell. Mol. Med. 2018; 22(2): 1034-46. https://dx.doi.org/10.1111/jcmm.13466.
  28. Larsen J.B., Andersen A.S., Hvas C.L., Thiel S., Lassen M.R., Hvas A.M., Hansen A.T. Lectin pathway proteins of the complement system in normotensive pregnancy and pre-eclampsia. Am. J. Reprod. Immunol. 2019; 81(4): e13092. https://dx.doi.org/10.1111/aji.13092.
  29. van der Linde D., Konings E.E., Slager M.A., Witsenburg M., Helbing W.A., Takkenberg J.J., Roos-Hesselink J.W. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J. Am. Coll. Cardiol. 2011; 58(21): 2241-7. https://dx.doi.org/10.1016/j.jacc.2011.08.025.
  30. Woodruff T.M., Ager R.R., Tenner A.J., Noakes P.G., Taylor S.M. The role of the complement system and the activation fragment C5a in the central nervous system. Neuromolecular Med. 2010; 12(2): 179-92. https://dx.doi.org/10.1007/s12017-009-8085-y.
  31. Lahti-Pulkkinen M., Girchenko P., Tuovinen S., Sammallahti S., Reynolds R.M., Lahti J. et al. Maternal hypertensive pregnancy disorders and mental disorders in children. Hypertension. 2020; 75(6): 1429-38. https://dx.doi.org/10.1161/ HYPERTENSI0NAHA.119.14140.
  32. Ducat A., Vargas A., Doridot L., Bagattin A., Lerner J., Vilotte J.L. et al. Low-dose aspirin protective effects are correlated with deregulation of HNF factor expression in the preeclamptic placentas from mice and humans. Cell Death Discov. 2019; 5: 94. https://dx.doi.org/10.1038/s41420-019-0170-x.
  33. Wat J.M., Hawrylyshyn K., Baczyk D., Greig I.R., Kingdom J.C. Effects of glycol-split low molecular weight heparin on placental, endothelial, and antiinflammatory pathways relevant to preeclampsia. Biol. Reprod. 2018; 99(5): 1082-90. https://dx.doi.org/10.1093/biolre/ioy127.
  34. McLaughlin K., Scholten R.R., Parker J.D., Ferrazzi E., Kingdom J.C.P. Low molecular weight heparin for the prevention of severe preeclampsia: where next? Br. J. Clin. Pharmacol. 2018; 84(4): 673-8. https://dx.doi.org/10.1111/bcp.13483.
  35. Sones J.L., Cha J., Woods A.K., Bartos A., Heyward C.Y., Lob H.E. et al. Decidual Cox2 inhibition improves fetal and maternal outcomes in a preeclampsia-like mouse model. JCI Insight. 2016; 1(3): e75351. https://dx.doi.org/10.1172/jci.insight.75351.
  36. Risitano A.M., Ricklin D., Huang Y., Reis E.S., Chen H., Ricci P. et al. Peptide inhibitors of C3 activation as a novel strategy of complement inhibition for the treatment of paroxysmal nocturnal hemoglobinuria. Blood. 2014; 123(13): 2094-101. https://dx.doi.org/10.1182/blood-2013-11-536573.
  37. Martel C., Granger C.B., Ghitescu M., Stebbins A., Fortier A., Armstrong P.W. et al. Pexelizumab fails to inhibit assembly of the terminal complement complex in patients with ST-elevation myocardial infarction undergoing primary percutaneous coronary intervention. Insight from a substudy of the Assessment of Pexelizumab in Acute Myocardial Infarction (APEX-AMI) trial. Am. Heart J. 2012; 164(1): 43-51. https://dx.doi.org/10.1016/j.ahj.2012.04.007.
  38. Lillegard K.E., Loeks-Johnson A. C., Opacich J. W., Peterson J.M., Bauer A.J., Elmquist B.J. et al. Differential effects of complement activation products c3a and c5a on cardiovascular function in hypertensive pregnant rats. J. Pharmacol. Exp. Ther. 2014; 351(2): 344-51. https://dx.doi.org/10.1124/jpet.114.218123.
  39. Pouw R.B., Brouwer M.C., de Gast M., van Beek A.E., van den Heuvel L.P., Schmidt C.Q. et al. Potentiation of complement regulator factor H. protects human endothelial cells from complement attack in aHUS sera. Blood Adv. 2019; 3(4): 621-32. https://dx.doi.org/10.1182/bloodadvances.2018025692.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies