Comparative analysis of stillbirth causes and rates in the Russian Federation in 2019 and 2020


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Aim: To make a comparative analysis of causes and rates of early neonatal mortality in the Russian Federation in 2019 and 2020. Materials and methods: This study was based on the analysis of statistical forms A-05 of the Federal State Statistics Service (Rosstat) for the years 2019-2020. These forms included medical records of perinatal deaths related to stillbirths. Stillbirth rates were calculated as the ratio of stillbirths to the total number of babies born alive and dead multiplied by 1000. Results: In 2020, the number of babies born alive decreased by 7.6%, and the number of babies born dead increased by 1.12% versus the data reported in 2019. In 2020, the rate of stillbirth (5.67%o) increased by 4.2% versus the rate in 2019 (5.44%). Most of all, the increase in stillbirths was noted in the South and Siberian Federal Districts. In general, the most common causes of stillbirths in the Russian Federation were respiratory disorders: the number of antenatal hypoxia was 78.2 (80.5%) and fetal intrapartum hypoxia was 6.7 (5.0%) of total number of stillbirths in 2019 and 2020, respectively. The proportion of congenital anomalies as the main disease was 6.7 (5.4%) of total number of stillbirths in 2019 and 2020, respectively. It was noted, that the number of stillborn babies with unknown causes of death increased by 52.2% in 2020 (4.7% of total number of stillborn babies) versus 2019 (3.1% of total number of stillborn babies)). Significant differences between the rates of major diseases that caused stillbirths were registered in different Federal Districts of the Russian Federation. Conclusion: According to Rosstat data, in 2020 (due to COVID-19 pandemic), the absolute number of babies born dead increased by 1.1% and the rate of stillbirths increased by 4.2% compared to 2019. Increased proportion of respiratory diseases, in particular, antenatal hypoxia and congenital pneumonia, reflects the direct and indirect effects of SARS- CoV-2 infection.

Full Text

Restricted Access

About the authors

Alexander I. Shchegolev

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation

Email: ashegolev@oparina4.ru
Dr. Med. Sci., Professor, Head of the 2nd Pathology Department

Uliana N. Tumanova

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation

Email: u.n.tumanova@gmail.com
PhD. in medical sciences, Leading Researcher at the 2nd Pathology Department

Andrey A. Chausov

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation

Head of the Information and Analytical Center of the Department of Regional Cooperation and Integration

Marina P. Shuvalova

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation

PhD. in medical sciences, Associate Professor, Deputy Director - Head of the Department of Regional Cooperation and Integration

References

  1. Li J., Huang D.Q., Zou B., Yang H., Hui W.Z., Rui F. et al. Epidemiology of COVID-19: A systematic review and meta-analysis of clinical characteristics, risk factors, and outcomes. J. Med. Virol. 2021; 93(3): 1449-58. https://dx.doi.org/10.1002/jmv.26424.
  2. Wolff D., Nee S., Hickey N.S., Marschollek M. Risk factors for Covid-19 severity and fatality: a structured literature review. Infection. 2021; 49(1): 15-28. https://dx.doi.org/10.1007/s15010-020-01509-1.
  3. Schwartz D.A., Graham A.L. Potential maternal and infant outcomes from coronavirus 2019-nCoV (SARS-CoV-2) infecting pregnant women: lessons from SARS, MERS, and other human coronavirus infections. Viruses. 2020; 12(2): 194. https://dx.doi.org/10.3390/v12020194.
  4. Vivanti A.J., Vauloup-Fellous C., Prevot S., Zupan V., Suffee C., Do Cao J. et al. Transplacental transmission of SARS-CoV-2 infection. Nat. Commun. 2020; 11(1): 3572. https://dx.doi.org/10.1038/s41467-020-17436-6.
  5. Sukhikh G., Petrova U., Prikhodko A., Starodubtseva N., Chingin K., Chen H., Bugrova A., Kononikhin A., Bourmenskaya O., Brzhozovskiy A., Polushkina E., Kulikova G., Shchegolev A., Trofimov D., Frankevich V., Nikolaev E., Shmakov R. Vertical transmission OF SARS-COV-2 in second trimester associated with severe neonatal pathology. Viruses. 2021; 13(3): 447. https://dx.doi.org/10.3390/v13030447.
  6. Raschetti R., Vivanti A.J., Vauloup-Fellous C., Loi B., Benachi A., De Luca D. Synthesis and systematic review of reported neonatal SARS-CoV-2 infections. Nat. Commun. 2020; 11(1): 5164. https://dx.doi.org/10.1038/s41467-020-18982-9.
  7. Щеголев А.И., Туманова У.Н., Шувалова М.П., Фролова О.Г. Гипоксия как причина мертворождаемости в Российской Федерации. Здоровье, демография, экология финно-угорских народов. 2014; 3: 96-8.
  8. Щеголев А.И., Туманова У.Н., Шувалова М.П. Преждевременная отслойка плаценты в генезе мертворождения. Международный журнал прикладных и фундаментальных исследований. 2016; 7-4: 575-9. URL: https://applied-research.ru/ru/article/view?id=9878 (дата обращения: 04.02.2022).
  9. Туманова У.Н., Шувалова М.П., Щеголев А.И. Предлежание плаценты в генезе мертворождения (по данным Росстата в 2012-2016 годах). Международный журнал прикладных и фундаментальных исследований. 2018; 3: 81-5. [Tumanova U.N., Shuvalova M.P., Shchegolev A.I. Placenta previa in the genesis of stillbirth (according to Rosstat in 20122016). Mezhdunarodnyj zhurnal prikladnyh i fundamental'nyh issledovanij/ International Journal of Applied and Basic Research. 2018; 3: 81-5. (in Russian)]. https://dx.doi.org/10.17513/mjpfi.12153.
  10. Щеголев А.И., Туманова У.Н., Фролова О.Г. Региональные особенности мертворождаемости в Российской Федерации. В. кн.: Крупнов Н.М., ред. Актуальные вопросы судебно-медицинской экспертизы и экспертной практики в региональных бюро судебно-медицинской экспертизы на современном этапе. Рязань; 2013: 163-9.
  11. Методические рекомендации по кодированию и выбору основного состояния в статистике заболеваемости и первоначальной причины в статистике смертности, связанных с COVID-19. М.; 2020. 24с. Available at: https://static-1.rosminzdrav.ru/system/attachments/attaches/000/050/527/original/27052020_MR_STAT_1.pdf
  12. Khalil A., von Dadelszen P., Draycott T., Ugwumadu A., O'Brien P., Magee L. Change in the incidence of stillbirth and preterm delivery during the COVID-19 pandemic. JAMA. 2020; 324(7): 705. https://dx.doi.org/10.1001/jama.2020.12746.
  13. MorM., Kugler N., Jauniaux E., Betser M., Wiener Y., Cuckle H. et al. Impact ofthe COVID-19 pandemic on excess perinatal mortality and morbidity in Israel. Am. J. Perinatol. 2021; 38(4): 398-403. https://dx.doi.org/10.1055/s-0040-1721515.
  14. De Curtis M., Villani L., Polo A. Increase of stillbirth and decrease of late preterm infants during the COVID-19 pandemic lockdown. Arch. Dis. Child. Fetal Neonatal Ed. 2021; 106(4): 456. https://dx.doi.org/10.1136/archdischild-2020-320682.
  15. Kumari V., Mehta K., Choudhary R. COVID-19 outbreak and decreased hospitalisation of pregnant women in labour. Lancet Glob. Health. 2020; 8(9): e1116-7. 10. https://dx.doi.org/1016/S2214-109X(20)30319-3.
  16. Kumar M., Puri M., Yadav R., Biswas R., Singh M., Chaudhary V. et al. Stillbirths and the COVID-19 pandemic: Looking beyond SARS-CoV-2 infection. Int. J. Gynecol. Obstet. 2021; 153: 76-82. https://dx.doi.org/10.1002/ijgo.13564.
  17. Ashish K.A., Gurung R., Kinney M.V., Sunny A.K., Moinuddin M., Basnet O. et al. Effect of the COVID-19 pandemic response on intrapartum care, stillbirth, and neonatal mortality outcomes in Nepal: a prospective observational study. Lancet Glob. Health. 2020; 8(10): e1273-81. https://dx.doi.org/10.1016/S2214-109X(20)30345-4.
  18. McMahon S.A., Ho L.S., Brown H., Miller L., Ansumana R., Kennedy C.E. Healthcare providers on the frontlines: a qualitative investigation of the social and emotional impact of delivering health services during Sierra Leone’s Ebola epidemic. Health Policy Plan. 2016; 31(9): 1232-9. https://dx.doi.org/10.1093/heapol/czw055.
  19. Stowe J., Smith H., Thurland K., Ramsay M.E., Andrews N., Ladhani S.N. Stillbirths during the COVID-19 pandemic in England, April-June 2020. JAMA. 2020; 325(1): 86-7. https://dx.doi.org/10.1001/jama.2020.21369.
  20. Gallo L.A., Gallo T.F., Borg D.J., Moritz K.M., Clifton V.L., Kumar S. A decline in planned, but not spontaneous, preterm birth rates in a large Australian tertiary maternity centre during COVID-19 mitigation measures. Aust. N. Z. J. Obstet. Gynaecol. 2021 Jul 12; https://dx.doi.org/10.1111/ajo.13406.10.1111/ajo.13406.
  21. Meyer R., Bart Y., Tsur A., Yinon Y., Friedrich L., Maixner N. et al. A marked decrease in preterm deliveries during the coronavirus disease 2019 pandemic. Am. J. Obstet. Gynecol. 2021; 224(2): 234-7. https://dx.doi.org/10.1016/j.ajog.2020.10.017.
  22. Shakespeare C., Dube H., Moyo S., Ngwenya S. Resilience and vulnerability of maternity services in Zimbabwe: a comparative analysis of the effect of Covid-19 and lockdown control measures on maternal and perinatal outcomes, a single-centre cross-sectional study at Mpilo Central Hospital. BMC Pregnancy Childbirth. 2021; 21(1): 416. https://dx.doi.org/10.1186/s12884-021-03884-5.
  23. Pasternak B., Neovius M., Soderling J., Ahlberg M., Norman M., Ludvigsson J.F. Preterm birth and stillbirth during the COVID-19 pandemic in Sweden: A Nationwide Cohort Study. Ann. Intern. Med. 2021; 174(6): 873-5. https://dx.doi.org/10.7326/M20-6367.
  24. Chmielewska B., Barratt I., Townsend R., Kalafat E., van der Meulen J., Gurol-Urganci I. Effects of the COVID-19 pandemic on maternal and perinatal outcomes: a systematic review and meta-analysis. Lancet Glob. Health. 2021; 9(6): e759-72. https://dx.doi.org/10.1016/S2214-109X(21)00079-6.
  25. Yang J., D'Souza R., Kharrat A., Fell D.B., Snelgrove J.W., Murphy K.E. et al. COVID-19 pandemic and population-level pregnancy and neonatal outcomes: a living systematic review and meta-analysis. Acta Obstet. Gynecol. Scand. 2021; 100(10): 1756-70. https://dx.doi.org/10.1111/aogs.14206.
  26. Vaccaro C., Mahmoud F., Aboulatta L., Aloud B., Eltonsy S. The impact of COVID-19 first wave national lockdowns on perinatal outcomes: a rapid review and meta-analysis. BMC Pregnancy Childbirth. 2021; 21(1): 676. https://dx.doi.org/10.1186/s12884-021-04156-y.
  27. Туманова У.Н., Щеголев А.И., Чаусов А.А., Шувалова М.П. Анализ причин ранней неонатальной смертности в Российской Федерации в 2020 году (год пандемии COVID-19). Вестник Российского государственного медицинского университета. 2021; 5: 76-83. https://dx.doi.org/10.24075/brsmu.2021.045.
  28. Schwartz D.A., Baldewijns M., Benachi A., Bugatti M., Collins R.R.J., De Luca D. et al. Chronic histiocytic intervillositis with trophoblast necrosis is a risk factor associated with placental infection from coronavirus disease 2019 (COVID-19) and intrauterine maternal-fetal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission in live-born and stillborn infants. Arch. Pathol. Lab. Med. 2021; 145(5): 517-8. https://dx.doi.org/10.5858/arpa.2020-0771-SA.
  29. Oltean I., Tran J., Lawrence S., Ruschkowski B.A., Zeng N., Bardwell C. et al. Impact of SARS-CoV-2 on the clinical outcomes and placental pathology of pregnant women and their infants: A systematic review. Heliyon. 2021; 7(3): e06393. https://dx.doi.org/10.1016Zi.heliyon.2021.e06393.
  30. Щеголев А.И., Туманова У.Н., Серов В.Н. Поражения плаценты у беременных с SARS-CoV-2-инфекцией. Акушерство и гинекология. 2020: 12: 44-52. [Shchegolev A.I., Tumanova U.N., Serov V.N. Placental lesions in pregnant women with SARS-COV-2 infection. Akusherstvo i ginekologiya/ Obstetrics and Gynecology. 2020; 12: 44-52. (in Russian)]. https://dx.doi.org/10.18565/aig.2020.12.44-52.
  31. Shchegolev A.I., Kulikova G.V., Tumanova U.N., Shmakov R.G., Sukhikh G.T. Morphometric parameters of placental villi in parturient women with COVID 19. Bull. Exp. Biol. Med. 2021; 172(1): 85-9. https://dx.doi.org/10.1007/s10517-021-05337-7
  32. Shchegolev A.I., Kulikova G.V., Lyapin V.M., Shmakov R.G., Sukhikh G.T. The number of syncytial knots and vegf expression in placental villi in parturient woman with COVID-19 depends on the disease severity. Bull. Exp. Biol. Med. 2021; 171(3): 399-403. https://dx.doi.org/10.1007/s10517-021-05236-x

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies