The current state of the problem and a clinical observation of therapy for obstetric sepsis caused by ESKAPE pathogens


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Background: According to the World Health Organization (WHO), sepsis is one of the three main causes of maternal death worldwide. The typical causative agents of sepsis in obstetrics remain sensitive to most antibacterial drugs. But, despite this, there is a steady increase in antibiotic-resistant strains of microorganisms in the population and a rise in severe cases of obstetric sepsis refractory to treatment. Case report: The authors describe a case in which, due to routing errors in the postpartum period, a female patient was infected with multidrug-resistant (MDR) microorganisms belonging to the ESKAPE pathogen group and they also provide an overview of the current procedures for overcoming antibacterial resistance. Conclusion: The systematic, multidisciplinary approach to treating sepsis in obstetrics, the widespread introduction of efferent procedures to prevent and treat multiple organ dysfunction, the close adherence to the rules of asepsis and antisepsis in managing these patients, the routing obstetric patients to specialized level III obstetric hospitals will decline the number of cases of near-miss and maternal mortality from obstetric sepsis.

Full Text

Restricted Access

About the authors

Alexander V. Belov

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: a_bebv@oparina4.ru
PhD, Associate Professor at the Department of Anesthesiology and Resuscitation

Aleksey V. Pyregov

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: a_pyregov@oparina4.ru
Dr. Med. Sci., Associate Professor, Director of the Institute of Anesthesiology-Resuscitation and Transfusiology

Pavel V. Troshin

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: p_troshin@oparina4.ru
Assistant of the Department of Anesthesiology and Resuscitation

Tatyana V. Priputnevich

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: t_pnputnevich@oparina4.ru
Dr. Med. Sci., Director of the Institute of Microbiology, Antimicrobial Therapy and Epidemiology of Clinical Epidemiology

Fedor A. Kosinov

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: f_kosinov@oparina4.ru
Researcher, Institute of Anesthesiology-Resuscitation and Transfusiology

Oleg V. Rogachevsky

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: o_rogachevskiy@oparina4.ru
Dr. Med. Sci., Professor, Head of the Department of Extracorporeal Methods of Treatment and Detoxification, Professor at the Department of Anesthesiology and Resuscitation

Natalia E. Shabanova

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: n_shabanova@oparina4.ru
PhD, Researcher in the Unit of Clinical Pharmacology, the Institute of Microbiology, Antimicrobial Therapy and Epidemiology of Clinical Epidemiology

Vladimir D. Chuprynin

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: a_nikolaeva@oparina4.ru
Ph.D., Head of the Surgery Department

Anastasia V. Nikolaeva

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

PhD, Chief Physician

References

  1. Chebbo A., Tan S., Kassis C., Tamura L., Carlson R.W. Maternal epsis and Septic Shock. Crit. Care Clin. 2016; 32(1): 119-35. https://dx.doi.org/10.1016/j.ccc.2015.08.010.
  2. Say L., Chou D., Gemmill A., Tungalp 0., Moller A.B., Daniels J.D. et al. Global eauses of maternal death: A WHO systematic analysis. Lancet Glob. Health. 2014;2(6): e323-33.
  3. Khan K.S., Wojdyla D., Say L., Gtilmezoglu A.M., Van Look P.F.A. WHO analysis of causes of maternal death: A systematic review. Lancet. 2006; 367: 1066-74.
  4. Cantwell R., Clutton-Brock T., Cooper G. et al. Saving mothers’ lives: reviewing maternal deaths to make motherhood safer: 2006-2008. The Eighth Report of the Confidential Enquiries into Maternal Deaths in the United Kingdom. BJOG. 2011; 118(Suppl. 1): 1-203.
  5. Acosta C.D., Knight M., Lee H.C., Kurinczuk J.J., Gould J.B., Lyndon A. The continuum of maternal sepsis severity: incidence and risk factors in a population-based cohort study. PLoS One. 2013; 8: e67175.
  6. van Dillen J., Zwart J., Schutte J., van Roosmalen J. Maternal sepsis: epidemiology, etiology and outcome. Curr. Opin. Infect. Dis. 2010; 23: 249-54.
  7. Serra-Burriel M., Keys M., Campillo-Artero C. et al. Impact of multi-drug resistant bacteria on economic and clinical outcomes of healthcare-associated infections in adults: Systematic review and meta-analysis. PLoS One. 2020; 15(1): e0227139. https://dx.doi.org/10.1371/journal.pone.0227139.
  8. Припутневич Т.В., Любасовская Л. А., Ду бод ело в Д. В., Мелку мян А. Р., Игонина Е.П., Акимкин В.Г., Дегтярев Д.Н., Сухих Г.Т. Эффективная профилактика и лечение ИСМП в родовспомогательных учреждениях российской федерации: нерешенные вопросы организации и контроля. Вестник Росздравнадзора. 2017; 4: 34-41.
  9. Nikaido H. Multidrug resistance in bacteria. Annu Rev. Biochem. 2009; 78: 119. https://dx.doi.org/10.1146/annurev.biochem.78.082907.145923
  10. Lerminiaux N.A., Cameron A.D.S. Horizontal transfer of antibiotic resistance genes in clinical environments. Can. J. Microbiol. 2019; 65(1): 34-44. https://dx.doi.org/10.1139/cjm-2018-0275.
  11. Santajit S., Indrawattana N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. Biomed. Res. Int. 2016; 2016: 2475067. https://dx.doi.org/10.1155/2016/2475067.
  12. Припутневич Т.В., Любасовская Л. А., Ду бод ело в Д. В., Гордеев А. Б., Мелкумян А.Р., Трофимов Д.Ю.,Донников А.Е.,Антонов Ю.В., Савичева А.М., Афонин А.А., Бичуль О.К., Веровская Т.А., Башмакова Н.В., Чистякова Г.Н., Чефранова Ж.Ю., Зубков В.В., Шмаков Р.Г. Результаты пилотного проекта по изучению распределения и интенсивности циркуляции штаммов возбудителей (в т.ч. резистентных) инфекционных заболеваний среди беременных, родильниц и новорожденных в регионах Российской Федерации. Клиническая микробиология и антимикробная химиотерапия. 2018; 20(Приложение1): 35-6.
  13. Ali A., Lamont R.F. Recent advances in the diagnosis and management of sepsis in pregnancy. F1000Res. 2019; 8: F1000 Faculty Rev-1546. https://dx.doi.org/10.12688/f1000research.18736.1.
  14. Bauer M.E., Bateman B.T., Bauer S.T., Shanks A.M., Mhyre J.M. Maternal sepsis mortality and morbidity during hospitalization for delivery: temporal trends and independent associations for severe sepsis. Anesth. Analg. 2013; 117: 944-50.
  15. Ryan H.M., Sharma S., Magee L.A. et al. The usefulness of the APACHE II score in obstetric critical care: a structured review. J. Obstet. Gynaecol. Can. 2016; 38: 909-18.
  16. Aarvold A.B., Ryan H.M., Magee L.A., von Dadelszen P., Fjell C., Walley K.R. Multiple organ dysfunction score is superior to the obstetric-specific sepsis in obstetrics score in predicting mortality in septic obstetric patients. Crit. Care Med. 2017; 45: e49-57.
  17. Douglas K.W., Pollock K.G.J., Young D., Catlow J., Green R. Infection frequently triggers thrombotic microangiopathy in patients with pre-existing factors: a single-institution experience. J. Clin. Apheresis. 2010; 25: 47-53.
  18. Al-Ostad G., Kezouh A., Spence A.R., Abenhaim H.A. Incidence and risk factors of sepsis mortality in labor, delivery and after birth: population based study in the USA. J. Obstet. Gynaecol. Res. 2015; 41: 1201-6.
  19. Flores-Trevino S., Garza-Gonzalez E., Mendoza-Olazaran S. et al. Screening of biomarkers of drug resistance or virulence in ESCAPE pathogens by MALDI-TOF mass spectrometry. Sci Rep. 2019; 12(9): 18945. https://dx.doi.org/10.1038/s41598-019-55430-1.
  20. Timezguid N., Das V., Hamdi A., Ciroldi M., Sfoggia-Besserat D., Chelha, R., Obadia E., Pallot, J.-L. Maternal sepsis during pregnancy or the postpartum period requiring intensive care admission. Int. J. Obstet. Anesth. 2012; 21(1): 51-5. https://dx.doi.org/10.1016/j.ijoa.2011.10.009.
  21. Сердюкова Д.М., Шабанова Н.Е., Любасовская Л.А., Николаева А.В., Шмаков Р.Г., Скоробогатый А.В., Припутневич Т.В. Современное состояние антибиотикорезистентности оппортунистических патогенов и уровня потребления антибактериальных препаратов в акушерском стационаре федерального значения третьего уровня. Антибиотики и химиотерапия. 2019; 64(11-12): 39-47. https://dx.doi.org/10.1016/0235-2990-2019-64-11-12-39-47.
  22. Knowles S.J., O’Sullivan N.P., Meenan A.M., Hannijfy R., Robson M. Maternal sepsis incidence, aetiology and outcome for mother and fetus: a prospective study. BJOG. 2015; 122(5): 663-71. https://dx.doi.org/10.1111/1471-0528.12892.
  23. Dellinger R.P., Levy M.M., Rhodes A. et al. Surviving biepsis eampaign: international guidelines for management of severe sepsis and septic shock: 2012. Crito Care Med. 2013; 41: 580-637.
  24. Rhodes A., Evans L.E., Alhazzani W. et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017; 43(3): 304-77. https://dx.doi.org/10.1007/s00134-017-4683-6.
  25. Kumar A., Roberts D., Wood K.E. et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit. Care Med. 2006; 34(6): 1589-96.
  26. Ferrer R., Martin-Loeches I., Phillips G. et al. Empiric antibiotic treatment reduces mortality in severe sepsis and septic shock from the first hour: results from a guideline-based performance improvement program. Crit. Care Med. 2014; 42: 1749-55.
  27. Barton J.R., Sibai B.M. Severe sepsis and septic shock in pregnancy. Obstet. Gynecol. 2012; 120: 689-706.
  28. Leth R.A., Moller J.K., Thomsen R.W., Uldbjerg N., Norgaard M. Risk of selected postpartum infections after cesarean section compared with vaginal birth: a five-year cohort study of 32,468 women. Acta Obstet. Gynecol. Scand. 2009; 88: 976-83.
  29. Smaill F.M., Grivell R.M. Antibiotic prophylaxis versus no prophylaxis for preventing infection after cesarean section. Cochrane Database Syst. Rev. 2014: CD007482.
  30. Tita A.T., Szychowski J.M., Boggess K. et al. Adjunctive azithromycin prophylaxis for cesarean delivery. N. Engl. J. Med. 2016; 375(13): 1231-41.
  31. Royal College of Obstetricians and Gynaecologists: Bacterial Sepsis in Pregnancy, Green-top Guideline No.64a. 2012.
  32. Darenberg J., Ihendyane N., Sjolin J. et al. Intravenous immunoglobulin G. therapy in streptococcal toxic shock syndrome: a European randomized, double-blind, placebo-controlled trial. Clin. Infect. Dis. 2003; 37(3): 333-40.
  33. Rhodes A., Evans L.E., Alhazzani W. et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017; 43(3): 304-77. https://dx.doi.org/10.1007/s00134-017-4683-6.
  34. Veiga R.P., Paiva J.A. Pharmacokinetics-pharmacodynamics issues relevant for the clinical use of beta-lactam antibiotics in critically ill patients. Crit. Care. 2018; 22(1): 233. https://dx.doi.org/10.1186/s13054-018-2155-1.
  35. Gongalves-Pereira J., Povoa P. Antibiotics in critically ill patients: a systematic review of the pharmacokinetics of в-lactams. Crit. Care. 2011; 15(5): R206. https://dx.doi.org/10.1186/cc10441.
  36. Bookstaver P.B., Bland C.M., Griffin B., Stover K.R., Eiland L.S., McLaughlin M. A review of antibiotic use in pregnancy. Pharmacotherapy. 2015; 35(11): 1052-62. https://dx.doi.org/10.1002/phar.1649.
  37. Vazquez-grande G., Kumar A. Optimizing antimicrobial therapy of sepsis and septic shock : focus on antibiotic combination therapy. Semin. Respir. Crit. Care Med. 2015; 1: 154-66. https://dx.doi.org/10.1055/s-0034-1398742.
  38. Ahmed A., Azim A., Gurjar M., Baronia A.K. Current concepts in combination antibiotic therapy for critically ill patients. Indian J. Crit. Care Med. 2014; 18: 310-4. https://dx.doi.org/10.4103/0972-5229.132495.
  39. Hall Snyder A.D., Werth B.J., Nonejuie P., McRoberts J.P., Pogliano J., Sakoulas G. et al. Fosfomycin enhances the activity of daptomycin against vancomycin-resistant Enterococci in an in vitro pharmacokinetic/pharmacodynamic model. Antimicrob. Agents Chemother. 2016; 60: 5716-23. https://dx.doi.org/10.1128/ AAC.00687-16.
  40. Zheng J.X., Sun X., Lin Z.W. et al. In vitro activities of daptomycin combined with fosfomycin or rifampin on planktonic and adherent linezolid-resistant isolates of Enterococcus faecalis. J. Med. Microbiol. 2019; 68(3): 493-502. https://dx.doi.org/10.1099/jmm.0.000945.
  41. Coronado-Alvarez N.M., Parra D., Parra-Ruiz J. Clinical efficacy of fosfomycin combinations against a variety of gram-positive cocci. Enferm. Infecc. Microbiol. Clin. 2018; 37: 4-10. https://dx.doi.org/10.1016/j.eimc.2018.05.009.
  42. Shafiq I., Bulman Z.P., Spitznogle S.L. et al. A combination of ceftaroline and daptomycin has synergistic and bactericidal activity in vitro against daptomycin nonsusceptible methicillin-resistant Staphylococcus aureus (MRSA). Infect. Dis. (Lond). 2017; 49(5): 410-6. https://dx.doi.org/10.1080/23744235.2016.1277587.
  43. Gritsenko D., Fedorenko M., Ruhe J.J., Altshuler J. Combination therapy with vancomycin and ceftaroline for refractory methicillin-resistant staphylococcus aureus bacteremia: A case series. Clin. Ther. 2017; 39(1): 212-8. https://dx.doi.org/10.1016/j.clinthera.2016.12.005.
  44. Petrosillo N., Taglietti F., Granata G. Treatment options for colistin resistant Klebsiella pneumoniae: present and future. J. Cli.n Med. 2019; 8(7): 934. Published 2019 Jun 28. https://dx.doi.org/10.3390/jcm8070934.
  45. Dundar D., Duymaz Z., Genc S., Er D.K., irvem A., Kandemir N. In-vitro activities of imipenem-colistin, imipenem-tigecycline, and tigecycline-colistin combinations against carbapenem-resistant Enterobacteriaceae. J. Chemother. 2018; 30(6-8): 342-7. https://dx.doi.org/10.1080/1120009X.2018.1516270.
  46. Gong J., Su D., Shang J. et al. Efficacy and safety of high-dose tigecycline for the treatment of infectious diseases: A meta-analysis. Medicine (Baltimore). 2019; 98(38): e17091. https://dx.doi.org/10.1097/MD.0000000000017091.
  47. Gonzalez-Bello C. Antibiotic adjuvants - a strategy to unlock bacterial resistance to antibiotics. Bioorg. Med. Chem. Lett. 2017; 27: 4221-8. https://dx.doi.org/10.1016/j.bmcl.2017.08.027.
  48. Wright G.D. Antibiotic adjuvants: rescuing antibiotics from resistance. Trends Microbiol. 2016; 24(11): 862-71. https://dx.doi.org/10.1016/j.tim.2016.06.009.
  49. Sun D., Rubio-Aparicio D., Nelson K., Dudley M.N., Lomovskaya O. Meropenem-vaborbactam resistance selection, resistance prevention, and molecular mechanisms in mutants of KPC-Producing Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2017; 61(12): e01694-17. https://dx.doi.org/10.1128/ AAC.01694-17.
  50. Barnes M.D., Taracila M.A., Good C.E. et al. Nacubactam enhances meropenem activity against carbapenem-resistant Klebsiella pneumoniae producing KPC. Antimicrob. Agents Chemother. 2019; 63(8): e00432-19. Published 2019 Jul 25. https://dx.doi.org/10.1128/AAC.00432-19.
  51. Monogue M.L., Sakoulas G., Nizet V., Nicolau D.P. Humanized exposures of a b-lactam-b-lactamase inhibitor, tazobactam, versus non-b-lactam-b-lactamase inhibitor, avibactam, with or without colistin, against acinetobacter baumannii in murine thigh and lung infection models. Pharmacology. 2018; 101: 255-61. https://dx.doi.org/10.1159/000486445.
  52. Aoki N., Ishii Y., Tateda K., Saga T., Kimura S., Kikuchi Y. et al. Efficacy of calcium-EDTA as an inhibitor for metallo-b-lactamase in a mouse model of Pseudomonas aeruginosa pneumonia. Antimicrob. Agents Chemother. 2010; 54: 4582-8. https://dx.doi.org/10.1128/AAC.00511-10.
  53. Mahan K., Martinmaki R., Larus I., Sikdar R., Dunitz J., Elias M. Effects of signal disruption depends on the substrate preference of the lactonase. Front. Microbiol. 2020; 10: 3003. https://dx.doi.org/10.3389/fmicb.2019.03003.
  54. Defraine V., Liebens V., Loos E. et al. 1-((2,4-Dichlorophenethyl)Amino)-3-Phenoxypropan-2-ol Kills pseudomonas aeruginosa through extensive membrane damage. Front. Microbiol. 2018; 9: 129. https://dx.doi.org/10.3389/fmicb.2018.00129.
  55. Defraine V., Verstraete L., Van Bambeke F., Anantharajah A., Townsend E.M., Ramage G. et al. Antibacterial activity of 1-[(2,4-Dichlorophenethyl)amino]-3-Phenoxypropan-2-ol against antibiotic-resistant strains of diverse bacterial pathogens, biofilms and in pre-clinical infection models. Front. Microbiol. 2017; 8: 2585. https://dx.doi.org/10.3389/fmicb.2017.02585.
  56. Durante-Mangoni E., Signoriello G., Andini R., Mattei A., De Cristoforo M., Murino P. et al. Colistin and rifampicin compared with colistin alone for the treatment of serious infections due to extensively drug-resistant Acinetobacter baumannii: a multicenter, randomized clinical trial. Clin. Infect. Dis. 2013; 57: 349-58. https://dx.doi.org/10.1093/cid/cit253.
  57. Yoshizumi A., Ishii Y., Livermore D.M., Woodford N., Kimura S., Saga T. et al. Efficacies of calcium-EDTA in combination with imipenem in a murine model of sepsis caused by Escherichia coli with NDM-1 b-lactamase. J. Infect. Chemother. 2013; 19: 992-5. https://dx.doi.org/10.1007/s10156-012-0528-y.
  58. Bremner J.B., Ambrus J.I., Samosorn S. Dual action-based approaches to antibacterial agents. Curr. Med. Chem. 2007; 14: 1459-77.
  59. Gupta V., Datta P. Next-generation strategy for treating drug resistant bacteria: Antibiotic hybrids. Indian J. Med. Res. 2019; 149(2): 97-106. https://dx.doi.org/10.4103/ijmr.IJMR_755_18.
  60. Morange M. What history tells us XLIII Bacteriophage: The contexts in which it was discovered. J. Biosci. 2017; 42(3): 359-62. https://dx.doi.org/10.1007/s12038-017-9702-9.
  61. Gordillo Altamirano F.L., Barr J.J. Phage therapy in the postantibiotic era. Clin. Microbiol. Rev. 2019; 32(2): e00066-18. https://dx.doi.org/10.1128/ CMR.00066-18.
  62. Viertel T.M., Ritter K., Horz H.-P. Viruses versus bacteria - novel approaches to phage therapy as a tool against multidrug-resistant pathogens. J. Antimicrob. Chemother. 2014; 69: 2326-36. https://dx.doi.org/10.1093/jac/dku173.
  63. Domingo-Calap P., Delgado-Martinez J. Bacteriophages: protagonists of a post-antibiotic era. Antibiotics. 2018; 7: 66. https://dx.doi.org/10.3390/antibiotics7030066.
  64. Pirnay J.P., Verbeken G., Ceyssens P.J. et al. The magistral phage. Viruses. 2018; 10(2): 64. https://dx.doi.org/10.3390/v10020064.
  65. Pallavali R.R., Degati V.L., Lomada D., Reddy M.C., Durbaka V.R.P. Isolation and in vitro evaluation of bacteriophages against MDR-bacterial isolates from septic wound infections. PLoS One. 2017; 12: e0179245. https://dx.doi.org/10.1371/journal.pone.0179245.
  66. Tinoco J.M., Buttaro B., Zhang H., Liss N., Sassone L., Stevens R. Effect of a genetically engineered bacteriophage on Enterococcus faecalis biofilms. Arch. Oral Biol. 2016; 71: 80-6. https://dx.doi.org/10.1016/j.archoralbio.2016.07.001.
  67. Hall A.R., De Vos D., Friman V.P., Pirnay J.P., Buckling A. Effects of sequential and simultaneous applications of bacteriophages on populations of Pseudomonas aeruginosa in vitro and in wax moth larvae. Appl. Environ. Microbiol. 2012; 78: 5646-52. https://dx.doi.org/10.1128/AEM.00757-12.
  68. Regeimbal J.M., Jacobs A.C., Corey B.W. et al. Personalized therapeutic cocktail of wild environmental phages rescues mice from Acinetobacter baumannii wound Infections. Antimicrob. Agents Chemother. 2016; 60(10): 5806-16. https://dx.doi.org/10.1128/AAC.02877-15.
  69. Baginska N., Pichlak A., Gorski A., Jonczyk-Matysiak E. Specific and selective bacteriophages in the Fight against multidrug-resistant Acinetobacter baumannii. Virol. Sin. 2019; 34(4): 347-57. https://dx.doi.org/10.1007/s12250-019-00125-0.
  70. Jennes S., Merabishvili M., Soentjens P. et al. Use of bacteriophages in the treatment of colistin-only-sensitive Pseudomonas aeruginosa septicaemia in a patient with acute kidney injury-a case report. Crit. Care. 2017; 21(1): 129. https://dx.doi.org/10.1186/s13054-017-1709-y.
  71. Krylov V., Shaburova O., Pleteneva E. et al. Modular approach to select bacteriophages targeting pseudomonas aeruginosa for their application to children suffering with cystic fibrosis. Front. Microbiol. 2016; 7: 1631. https://dx.doi.org/10.3389/fmicb.2016.01631.
  72. Schooley R.T., Biswas B., Gill J.J. et al. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. [published correction appears in Antimicrob Agents Chemother. 2018 Nov 26;62(12):]. Antimicrob. Agents Chemother. 2017; 61(10): e00954-17. [published correction appears in Antimicrob Agents Chemother. 2018 Nov 26;62(12):]. https://dx.doi.org/10.1128/AAC.00954-17.
  73. Яковлев С.В., Сидоренко С.В., Спичак Т.В., Абеуова Б.А., Абидов А.М. и др. Стратегия и тактика рационального применения антимикробных средств в амбулаторной практике. Евразийские клинические рекомендации. 2016 год. Справочник поликлинического врача. 2017; 1: 6-53.
  74. Rohde C., Resch G., Pirnay J.P., Blasdel B., Debarbieux L., Gelman D. et al. Expert opinion on three phage therapy related topics: bacterial phage resistance, phage training and prophages in bacterial production strains. Viruses. 2018; 10:178. https://dx.doi.org/10.3390/v10040178.
  75. Chen J., Novick R.P. Phage-mediated intergeneric transfer of toxin genes. Science. 2009; 323: 139-41. https://dx.doi.org/10.1126/science.1164783.
  76. Malik D.J., Sokolov I.J., Vinner G.K., Mancuso F., Cinquerrui S., Vladisavljevic G.T. et al. Formulation, stabilisation and encapsulation of bacteriophage for phage therapy. Adv. Colloid Interface Sci. 2017; 249: 100-33. https://dx.doi.org/10.1016/j.cis.2017.05.014.
  77. Cooper C.J., Koonjan S., Nilsson A.S. Enhancing whole phage therapy and their derived antimicrobial enzymes through complex formulation. Pharmaceuticals. 2018; 11: E34. https://dx.doi.org/10.3390/ph11020034.
  78. Patey O., McCallin S., Mazure H., Liddle M., Smithyman A., Dublanchet A. Clinical indications and compassionate use of phage therapy: personal experience and literature review with a focus on osteoarticular infections. Viruses. 2018; 11(1): 18. https://dx.doi.org/10.3390/v11010018.
  79. Jo A., Ding T., Ahn J. Synergistic antimicrobial activity of bacteriophages and antibiotics against Staphylococcus aureus. Food Sci. Biotechnol. 2016; 25: 935-40. https://dx.doi.org/10.1007/s10068-016-0153-0.
  80. Shlezinger M., Coppenhagen-Glazer S., Gelman D., Beyth N., Hazan R. Eradication of vancomycin-resistant enterococci by combining phage and vancomycin. Viruses. 2019; 11(10): 954. https://dx.doi.org/10.3390/v11100954.
  81. Jault P., Leclerc T., Jennes S. et al. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. Lancet Infect. Dis. 2019; 19(1): 35-45. https://dx.doi.org/10.1016/S1473-3099(18)30482-1.
  82. Sarker S.A., Sultana S., Reuteler G. et al. Oral phage therapy of acute bacterial diarrhea with two coliphage preparations: A randomized trial in children from bangladesh. EBioMedicine. 2016; 4: 124-37. https://dx.doi.org/10.1016/j.ebiom.2015.12.023.
  83. Leitner L., Sybesma W., Chanishvili N. et al. Bacteriophages for treating urinary tract infections in patients undergoing transurethral resection of the prostate: a randomized, placebo-controlled, double-blind clinical trial. BMC Urol. 2017; 17(1): 90. https://dx.doi.org/10.1186/s12894-017-0283-6.
  84. Juang P. Antibiotic resistance in the ICU. In: Boucher B.A., Haas C.E., eds. Critical care self-assessment program. 2016. Book 1. Infection Critical Care. Lenexa, KS: American College of Clinical Pharmacy. 2016: 123.
  85. Яковлев С.В., Брико Н.И., Сидоренко С.В., Проценко Д.Н., ред. Программа СКАТ (Стратегия Контроля Антимикробной Терапии) при оказании стационарной медицинской помощи: Российские клинические рекомендации. М.: Издательство «Перо»; 2018. 156 с.
  86. Huang G.K., Stewardson A.J., Grayson M.L. Back to basics: hand hygiene and isolation. Curr. Opin. Infect. Dis. 2014; 27(4): 379-89. https://dx.doi.org/10.1097/QCO.0000000000000080.
  87. Morency-Potvin P., Schwartz D.N., Weinstein R.A. Antimicrobial stewardship: how the microbiology laboratory can right the ship. Clin. Microbiol. Rev. 2016; 30(1): 381-407. https://dx.doi.org/10.1128/CMR.00066-16.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies