The fetal myocardial performance index: physiology and clinical significance


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Functional assessment of the fetal cardiovascular system is an important method for monitoring its condition in health and disease. The myocardial performance index (MPI) based on the principles of heart cycle phase analysis is a new information indicator for the systolic and diastolic functions of the fetal heart. Since the introduction of MPI, its correct definition makes significant demands for a procedure to record cardiac time intervals and their reproducibility and to develop standard indicators. Application of MPI shows early and significant changes in fetal cardiac function in diseases, such as fetal growth retardation, maternal diabetes, severe heart defects, and fetofetal transfusion in monochorionic twins. Conclusion. Further studies of the sensitivity of MPI to cardiac loading conditions, its correlation with the results of tissue Doppler imaging and automated calculation will be able to use this index as an effective diagnostic tool in studying the fetal cardiovascular system in different types of obstetric pathology.

Full Text

Restricted Access

About the authors

Pavel B. Tsyvian

Ural Research Institute of Maternal and Infant Care, Ministry of Health of Russia; Ural State Medical University, Ministry of Health of Russia,

Email: pavel.tsyvian@gmail.com
D.Sc., Professor, Senior researcher

Galina B. Malgina

Ural Research Institute of Maternal and Infant Care, Ministry of Health of Russia

Email: galinamalgina@mail.ru
D.Sc., Professor

Vladimir L. Kodkin

South Ural State University (National Research University)

Email: kodkinvl@susu.ru
D.Sc., Professor of Automated Electromotor Department

Natalia V. Kosovtsova

Ural Research Institute of Maternal and Infant Care, Ministry of Health of Russia

Email: kosovcovan@mail.ru
D.Sc., Head of Ultrasound Department

Tatyana V. Markova

Ural Research Institute of Maternal and Infant Care, Ministry of Health of Russia

Email: ta.ma.vl@mail.ru
M.D., Ph.D., Senior researcher

Olga A. Kraeva

Ural Research Institute of Maternal and Infant Care, Ministry of Health of Russia

Email: olalkra@yandex.ru
M.D., Ph.D., Senior researcher

Darya V. Mangalieva

Institute of Immunology and Physiology, Ural Branch, Russian Academy of Sciences

Email: alpendwarf@gmail.com
Junior researcher

References

  1. Godfrey M.E., Messing B., Cohen S.M., Valsky D.V., Yagel S. Functional assessment of the fetal heart: a review. Ultrasound Obstet. Gynecol. 2012; 39(2): 131-44. https://dx.doi.org/10.1002/uog.9064.
  2. Hernandez-Andrade E., Benavides-Serralde J.A., Cruz-Martinez R., Welsh A., Mancilla-Ramirez J. Evaluation of conventional Doppler fetal cardiac function parameters: E/A ratios, outflow tracts, and myocardial performance index. Fetal Diagn. Ther. 2012; 32(1-2): 22-9. https://dx.doi.org/10.1159/000330792.
  3. Tei C. New non-invasive index for combined systolic and diastolic ventricular function. J. Cardiol. 1995; 26(2): 135-6.
  4. Tei C., Ling L.H., Hodge D.O., Bailey K.R, Oh J.K., Rodeheffer R.J. et al. New index of combined systolic and diastolic myocardial performance: a simple and reproducible measure of cardiac function - a study in normal and dilated cardiomyopathy. J. Cardiol. 1995; 26(6): 357-66.
  5. Friedman D., Buyon J., Kim M., Glickstein J.S. Fetal cardiac function assessed by Doppler myocardial performance index (Tei Index). Ultrasound Obstet. Gynecol. 2003; 21(1): 33-6. https://dx.doi.org/10.1002/uog.11.
  6. Bers D.M. Calcium cycling and signaling in cardiac myocytes. Annu. Rev. Physiol. 2008; 70: 23-49. https://dx.doi.ois/ 10.1146/annurev.physiol.70.113006.100455.
  7. Crispi F., Gratacos E. Fetal cardiac function: technical considerations and potential research and clinical applications. Fetal Diagn. Ther. 2012; 32(1-2): 47-64. https://dx.doi.org/10.1159/000338003.
  8. Alien D.G., Kentish J.C. The cellular basis of the length-tension relation in cardiac muscle. J. Mol. Cell. Cardiol. 1985; 17(9): 821-40. https://dx.doi.org/ 10.1016/s0022-2828(85)80097-3.
  9. Hernandez-Andrade E., Figueroa-Diesel H., Kottman C., Illanes S., Arraztoa J., Acosta-Rojas R. et al. Gestational age adjusted reference values for the modified myocardial performance index for evaluation of fetal left cardiac function. Ultrasound Obstet. Gynecol. 2007; 29(3): 321-5. https://dx.doi.org/ 10.1002/ uog.3947.
  10. Eidem B.W., Sapp B.G., Suarez C.R., Cetta F. Usefulness of the myocardial performance index for early detection of anthracycline-induced cardiotoxicity in children. Am. J. Cardiol. 2001; 87(9): 1120-2, A9. https://dx.doi.org/ 10.1016/ s0002-9149(01)01476-x.
  11. Williams R.V., Ritter S., Tani L.Y., Pagoto L.T., Minich L.L. Quantitative assessment of ventricular function in children with single ventricles using the Doppler myocardial performance index. Am. J. Cardiol. 2000; 86(10): 1106-10. https://dx.doi.org/10.1016/s0002-9149(00)01168-1.
  12. Tsutsumi T., Ishii M., Eto G., Hota M., Kato H. Serial evaluation for myocardial performance in fetuses and neonates using a new Doppler index. Pediatr. Int. 1999; 41(6): 722-7. https://dx.doi.org/10.1046/j.1442-200x.1999.01155.x.
  13. Tsyvian P.B., Malkin K., Wladimiroff J.W. Assessment of fetal left cardiac isovolumic relaxation time in appropriate and small-for-gestational-age fetuses. Ultrasound Med. Biol. 1995; 21(6): 739-43. https://dx.doi.org/10.1016/0301-5629(95)00016-k.
  14. Tsyvian P.B., Markova T.V., Mikhailova S.V., Hop W.C.J., Wladimiroff J.W. Left ventricular isovolumic relaxation and rennin-angiotensin system in the growth restricted fetus. Eur. J. Obstet. Gynecol. Reprod. Biol. 2008; 140(1): 33-7. https://dx.doi.org/10.1016/j.ejogrb.2008.02.005.
  15. Campbell K.H., Thung S., Buhimschi C., Copel J.A., Bahtiyar O. 0P16.02: The Tei index to assess myocardial performance in fetuses of diabetic mothers. Ultrasound Obstet. Gynecol. 2011; 38(Suppl. 1): 101-8. https://dx.doi.org/ 10.1002/uog.9406.
  16. Russell N., Foley M., McAuliffe F. First trimester fetal cardiac function - is there a difference between the diabetic and non-diabetic population? Am. J. Obstet. Gynecol. 2006; 195(6): S137. https://dx.doi.org/10.1016/j.ajog.2006.10.478.
  17. Api O., Emeksiz M.B., Api M., Ugurel V., Unal O. Modified myocardial performance index for evaluation of fetal cardiac function in pre-eclampsia. Ultrasound Obstet. Gynecol. 2009; 33(1): 51-7. https://dx.doi.org/ 10.1002/ uog.6272.
  18. Comas M., Crispi F., Cruz-Martinez R., Martinez J.M., Figueras F., Gratacos E. Usefulness of myocardial tissue Doppler vs. conventional echocardiography in the evaluation of cardiac dysfunction in early-onset intrauterine growth restriction. Am. J. Obstet. Gynecol. 2010; 203(1): 45. e1-7. https://dx.doi.org/ 10.1016/j.ajog.2010.02.044.
  19. Crispi F., Hernandez-Andrade E., Pelsers M.M., Plasencia W., Benavides-Serralde J.A., Eixarch E. et al. Cardiac dysfunction and cell damage across clinical stages of severity in growth-restricted fetuses. Am. J. Obstet. Gynecol. 2008; 199(3): 254. e1-8. https://dx.doi.org/10.1016/j.ajog.2008.06.056.
  20. Clur S.A., van der Wal A.C., Ottenkamp J., Bilardo C.M. Echocardiographic evaluation of fetal cardiac function: clinical and anatomical correlations in two cases of endocardial fibroelastosis. Fetal Diagn. Ther. 2010; 28(1): 51-7. https:// dx.doi.org/10.1159/000313426.
  21. Chen Y., Lv G., Li B., Wang Z. Cerebral vascular resistance and left ventricular myocardial performance in fetuses with Ebstein’s anomaly. Am. J. Perinatol. 2009; 26(4): 253-8. https://dx.doi.org/10.1055/s-0028-1103152.
  22. Szwast A, Tian Z., McCann M., Donaghue D., Rychik J. Right ventricular performance in the fetus with hypoplastic left heart syndrome. Ann. Thorac. Surg. 2009; 87(4): 1214-9. https://dx.doi.org/10.1016/j.athoracsur.2008.11.032.
  23. Romero R., Espinoza J., Goncalves L.F., Gomez R., Medina L., Silva M. et al. Fetal cardiac dysfunction in preterm premature rupture of membranes. J. Matern. Fetal Neonatal Med. 2004; 16(3): 146-57. https://dx.doi.org/ 10.1080/14767050400009279.
  24. Stirnemann J.J., Mougeot M., Proulx F., Nasr B., Essaoui M., Fouron J.C. et al. Profiling fetal cardiac function in twin-twin transfusion syndrome. Ultrasound Obstet. Gynecol. 2010; 35(1): 19-27. https://dx.doi.org/10.1002/uog.7488.
  25. Falkensammer C.B., Paul J., Huhta J.C. Fetal congestive heart failure: correlation of Tei index and cardiovascular score. J. Perinat. Med. 2001; 29(5): 390-8. https://dx.doi.org/10.1515/JPM.2001.055.
  26. Mahajan A, Henry A., Meriki N., Hernandez-Andrade E., Crispi F., Wu L. et al. The (Pulsed-Wave) Doppler fetal myocardial performance index: technical challenges, clinical applications and future research. Fetal Diagn. Ther. 2015; 38(1): 1-13. https://dx.doi.org/10.1159/000363181.
  27. Hernandez-Andrade E., Lopez-Tenorio J., Figueroa-Diesel H., Sanin-Blair J., Carreras E., Cabero L. et al. A modified myocardial performance (Tei) index based on the use of valve clicks improves reproducibility of fetal left cardiac function assessment. Ultrasound Obstet. Gynecol. 2005; 26(3): 227-32. https:// dx.doi.org/10.1002/uog.1959.
  28. Meriki N., Welsh A.W. Development of Australian reference ranges for the left fetal modified myocardial performance index and the influence of caliper location on time interval measurement. Fetal Diagn. Ther. 2012; 32(1): 87-95. https://dx.doi.org/10.1159/000334133.
  29. Meriki N., Izurieta A., Welsh A.W. Fetal left modified myocardial performance index: technical refinements in obtaining pulsed Doppler waveforms. Ultrasound Obstet. Gynecol. 2012; 39(4): 421-9. https://dx.doi.org/10.1002/uog.9090.
  30. Welsh A.W., Mahwari P., Wang J., Henry A., Chang D., Crispi F. et al. Evaluation of an automated fetal myocardial performance index. Ultrasound Obstet. Gynecol. 2016; 48(4): 496-503. https://dx.doi.org/10.1002/uog.15770.
  31. Lu G., Wang G., He B., Li B., Huang Z., Chen Q. et al. Changes in the Tei index during acute fetal hypoxemia in the near-term ovine fetus after intermittent umbilical cord occlusion. Ultrasound Obstet. Gynecol. 2009; 34(6): i-viii. https://dx.doi.org/10.1002/uog.3997.
  32. Giussani D.A. The fetal brain sparing response to hypoxia: physiological mechanisms. J. Physiol. 2016; 594(5): 1215-30. https://dx.doi.org/ 10.1113/ JP271099.
  33. Hunter C.J., Blood A.B., White C.R., Pearce W.J., Power G.G. Role of nitric oxide in hypoxic cerebral vasodilatation in the ovine fetus. J. Physiol. 2003; 549(Pt. 2): 625-33. https://dx.doi.org/10.1113/jphysiol.2002.038034.
  34. Pedersen L.H., Mogra R., Hyett J. Effect of corticosteroids on cardiac function in growth-restricted fetuses. Ultrasound Obstet. Gynecol. 2016; 48(2): 204-9. https://dx.doi.org/10.1002/uog.15743.
  35. Wijnberger L.D., Bilardo C.M., Hecher K., Stigter R.H., Visser G.H. Effect of antenatal glucocorticoid therapy on arterial and venous blood flow velocity waveforms in severely growth-restricted fetuses. Ultrasound Obstet. Gynecol. 2004; 23(6): 584-9. https://dx.doi.org/10.1002/uog.1052.
  36. Piazze J., Dillon K.C., Cerekja A. Betamethasone effects on umbilical arteries and ductus venosus Doppler velocity waveforms in growth-restricted fetuses. J. Matern. Fetal Neonatal Med. 2012; 25(7): 1179-82. https://dx.doi.org/10.3109/ 14767058.2011.624216.
  37. Ichizuka K., Matsuoka R., Hasegawa J., Okai T. OP39.07: The Tei index in FGR fetus. Ultrasound Obstet. Gynecol. 2010; 36(Suppl. 1): 166.
  38. Comas M., Crispi F. Assessment of fetal cardiac function using tissue Doppler techniques. Fetal Diagn. Ther. 2012; 32(1-2): 30-8. https://dx.doi. org/10.1159/000335028.
  39. Hernandez-Andrade E., Crispi F., Benavides-Serralde J.A., Plasencia W., Diesel H.F., Eixarch E. et al. Contribution of the myocardia performance index and aortic isthmus blood flow index to predicting mortality in preterm growth-restricted fetuses. Ultrasound Obstet. Gynecol. 2009; 34(4): 430-6. https:// dx.doi.org/10.1002/uog.7347.
  40. Benavides-Serralde A., Scheier M., Cruz-Martinez R., Crispi F., Figueras F., Gratacos E. et al. Changes in central and peripheral circulation in intrauterine growth restricted fetuses at different stages of umbilical artery flow deterioration: new fetal cardiac and brain parameters. Gynecol. Obstet. Invest. 2011; 71(4): 274-80. https://dx.doi.org/10.1159/000323548.
  41. Crispi F., Hernandez-Andrade E., Pelsers M.M., Plasencia W., Benavides-Serralde J.A., Eixarch E. et al. Cardiac dysfunction and cell damage across clinical stages of severity in growth-restricted fetuses. Am. J. Obstet. Gynecol. 2008; 199(3): 254. e1-8. https://dx.doi.org/10.1016/j.ajog.2008.06.056.
  42. Van Mieghem T., Klaritsch P., Done E., Gucciardo L., Lewi P., Verhaeghe J. et al. Assessment of fetal cardiac function before and after therapy for twin-to-twin transfusion syndrome. Am. J. Obstet. Gynecol. 2009; 200(4): 400. e1-7. https:// dx.doi.org/10.1016/j.ajog.2009.01.051.
  43. Quintero R., Borberg C., Bornick P.W., Kontopoulos E.V. 647: Is a preoperative elevated Tei index a poor prognostic factor in twin-twin transfusion syndrome? Am. J. Obstet. Gynecol. 2008; 199(6, Suppl.A): S185. https://dx.doi.org/ 10.1016/j.ajog.2008.09.677.
  44. Barrea C., Alkazaleh F., Ryan G., McCrindle B.W., Roberts A., Bigras J.L. et al. Prenatal cardiovascular manifestations in the twin-to-twin transfusion syndrome recipients and the impact of therapeutic amnioreduction. Am. J. Obstet. Gynecol. 2005; 192(3): 892-902. https://dx.doi.org/10.1016/ j.ajog.2004.09.015.
  45. Tsyvian P.B., Bashmakova N.V., Markova T.V., Mikhailova S.V. Hypertensive mechanisms in twin-to-twin transfusion syndrome. In: 36 International Congress on pathophysiology of pregnancy. Moscow, May 24-28, 2004: 15-6.
  46. Turan S., Turan O.M., Miller J., Harman C., Reece E.A., Baschat A.A. et al. Decreased fetal cardiac performance in the first trimester correlates with hyperglycemia in pregestational maternal diabetes. Ultrasound Obstet. Gynecol. 2011; 38(3): 325-31. https://dx.doi.org/10.1002/uog.9035.
  47. Tsyvian P.B., Malkin K., Artemieva O., Wladimiroff J.W. Assessment of left ventricular filling in normally grown fetuses, growth-restricted fetuses and fetuses from diabetic mothers. Ultrasound Obstet. Gynecol. 1998; 12(1): 33-8. https://dx.doi.org/10.1046/j.1469-0705.1998.12010033.x.
  48. Rudolph A.M. Distribution and regulation of blood flow in the fetal and neonatal lamb. Circ. Res. 1985; 57(6): 811-21. https://dx.doi.org/ 10.1161/ 01.res.57.6.811
  49. Reller M.D., Morton M.J., Reid D.L., Thornburg K.L. Fetal lamb ventricles respond differently to filling and arterial pressures and to in utero ventilation. Pediatr. Res. 1987; 22(6): 621-6. https://dx.doi.org/10.1203/00006450-198712000-00001.
  50. Gardiner H.M., Pasquini L., Wolfenden J., Barlow A., Li W., Kulinskaya E. et al. Myocardial tissue Doppler and long axis function in the fetal heart. Int. J. Cardiol. 2006; 113(1): 39-47. https://dx.doi.org/10.1016/j.ijcard.2005.10.029.
  51. Perles Z., Nir A., Gavri S., Rein A.J. Assessment of fetal myocardial performance using myocardial deformation analysis. Am. J. Cardiol. 2007; 99(7): 993-6. https://dx.doi.org/10.1016/j.amjcard.2006.10.066.
  52. Di Salvo G., Russo M.G., Paladini D., Pacileo G., Felicetti M., Ricci C. et al. Quantification of regional left and right ventricular longitudinal function in 75 normal fetuses using ultrasound-based strain rate and strain imaging. Ultrasound Med. Biol. 2005; 31(9): 1159-62. https://dx.doi.org/ 10.1016/ j.ultrasmedbio.2005.05.011.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies