Clinical and molecular aspects of autologous embryo-cumulus cells co-culture in ifv programs

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective: To assess the effectiveness of autologous embryo-cumulus cells co-culture in assisted reproductive technology (ART) programs for infertility treatment, as well as to analyze metabolic profile of culture media after culturing cumulus cells.

Materials and methods: 127 married couples who underwent infertility treatment using ART were tested. Embryological indicators and treatment effectiveness were assessed. The prospective study of metabolome in cumulus cells and culture media after cumulus cells co-culture was performed by high performance liquid chromatography and mass spectrometry using 90 samples of culture media after culturing cumulus cells, 90 samples of cumulus cells, as well as 10 control samples of culture media without cumulus cells.

Results: The prospective study of the influence of embryo-cumulus cells co-culture on the morphology of blastocysts and possibility of their implantation versus standard-based method using conventional culture media was performed. The study showed that autologous embryo-cumulus cells co-culture reduces the chances of implantation in women of late reproductive age by 1.2 times, and is not advisable for young patients. At the same time, co-culture significantly increases the number of high-quality blastocysts suitable for cryopreservation in the general cohort. This results in a greater likelihood of having a child with the use of a single ovarian stimulation protocol. Assessment of metabolism of cumulus cells showed that in culture media, co-cultivation increases the concentration of some amino acids (leucine, valine, serine) and amino-acid containing dipeptides. The obtained data suggest that cumulus cells are involved in lipid metabolism, initiating fatty acid oxidation, which is essential for normal embryonic development.

Conclusion: The results obtained in this study suggest that it is reasonable to refuse embryo-cumulus cells co-culture in women aged over 36 years, who had multiple IVF failures in anamnesis. Autologous embryo-cumulus cells co-culture significantly increases the number of high-quality embryos in young women.

Full Text

Restricted Access

About the authors

Gunay R. Asfarova

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Author for correspondence.
Email: asfarovag@gmail.com

postgraduate student, B.V. Leonov Department of Assisted Technologies for the Treatment of Infertility

Russian Federation, Moscow

Veronika Yu. Smolnikova

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: v_smolnikova@oparina4.ru

Dr. Med. Sci., Leading Researcher at the B.V. Leonov Department of Assisted Technologies for the Treatment of Infertility

Russian Federation, Moscow

Natalya P. Makarova

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: np_makarova@oparina4.ru

Dr. Bio. Sci., Leading Researcher, B.V. Leonov Department of Assisted Technologies for the Treatment of Infertility

Russian Federation, Moscow

Mikhail Yu. Bobrov

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: m_bobrov@oparina4.ru

PhD, Head of Molecular Pathophysiology Laboratory

Russian Federation, Moscow

Chupalav M. Eldarov

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: ch_eldarov@oparina4.ru

PhD, Senior Researcher at Molecular Pathophysiology Laboratory

Russian Federation, Moscow

Boris V. Zingerenko

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: b_zingerenko@oparina4.ru

Junior Researcher at the B.V. Leonov Department of Assisted Technologies for the Treatment of Infertility

Russian Federation, Moscow

Elena A. Kalinina

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: e_kalinina@oparina4.ru

Dr. Med. Sci., Professor, Head of the B.V. Leonov Department of Assisted Technologies for the Treatment of Infertility

Russian Federation, Moscow

References

  1. Loutradis D., Theofanakis C., Anagnostou E., Mavrogianni D., Partsinevelos G.A. Genetic profile of SNP(s) and ovulation induction. Curr. Pharm. Biotechnol. 2012; 13(3): 417-25. https://dx.doi.org/10.2174/138920112799361954.
  2. Gunby J., Daya S. Assisted reproductive technologies (ART) in Canada: 2002 results from the Canadian ART Register. Fertil. Steril. 2006; 86(5): 1356-64. https://dx.doi.org/10.1016/j.fertnstert.2006.04.030.
  3. Borght M.V., Wyns C. Fertility and infertility: definition and epidemiology. Clin. Biochem. 2018; 62: 2-10. https://dx.doi.org/10.1016/j.clinbiochem.2018.03.012
  4. Boomsma C.M., Kavelaars A., Eijkemans M.J., Lentjes E.G., Fauser B.C, Heijnen C.J., Macklon N.S. Endometrial secretion analysis identifies a cytokine profile predictive of pregnancy in IVF. Hum. Reprod. 2009; 24(6): 1427-35. https://dx.doi.org/10.1093/humrep/dep011.
  5. Richani D., Dunning K.R., Thompson J.G., Gilchrist R.B. Metabolic co-dependence of the oocyte and cumulus cells: essential role in determining oocyte developmental competence. Hum. Reprod. Update. 2021; 27(1): 27-47. https://dx.doi.org/10.1093/humupd/dmaa043.
  6. Krylova Yu.S., Kvetnoy I.M., Aylamazyan E.K. Endometrial receptivity: the molecularmechanisms regulation of implantation. Journal of obstetrics and women's diseases. 2013; 62(2): 63-74. (in Russian). https://dx.doi.org/10.17816/JOWD622.
  7. Nikoloff N. The key role of cumulus cells in oocytes in vitro maturation protocols. Fertil. Steril. 2021; 116(6): 1663. https://dx.doi.org/10.1016/ j.fertnstert.2021.10.010.
  8. Turathum B., Gao E.M., Chian R.C. The function of cumulus cells in oocyte growth and maturation and in subsequent ovulation and fertilization. Cells. 2021; 10(9): 2292. https://dx.doi.org/10.3390/cells10092292.
  9. Gao E.M., Turathum B., Wang L., Zhang D., Liu Y.B., Tang R.X., Chian R.C. The differential metabolomes in cumulus and mural granulosa cells from human preovulatory follicles. Reprod. Sci. 2022; 29(4): 1343-56. https://dx.doi.org/10.1007/s43032-021-00691-3.
  10. Kattal N., Cohen J., Barmat L.I. Role of coculture in human in vitro fertilization: a meta-analysis. Fertil. Steril. 2008; 90(4): 1069-76. https://dx.doi.org/10.1016/ j.fertnstert.2007.07.1349.
  11. Parikh F.R., Nadkarni S.G., Naik N.J., Naik D.J., Uttamchandani S.A. Cumulus coculture and cumulus-aided embryo transfer increases pregnancy rates in patients undergoing in vitro fertilization. Fertil. Steril. 2006; 86(4): 839-47. https://dx.doi.org/10.1016/j.fertnstert.2006.03.028.
  12. Lin Y.H., Hwang J.L., Seow K.M., Huang L.W., Chen H.J., Tzeng C.R. Effects of growth factors and granulosa cell co-culture on in-vitro maturation of oocytes. Reprod. Biomed. Online. 2009; 19(2): 165-70. https://dx.doi.org/10.1016/s1472-6483(10)60068-5.
  13. von Mengden L., De Bastiani M.A., Grun L.K., Barbé-Tuana F., Adriaenssens T., Smitz J. et al. Bioinformatic analysis of human cumulus cells to unravel cellular's processes that could be used to establish oocyte quality biomarkers with clinical application. Reprod. Sci. 2022 Jul 26. https://dx.doi.org/10.1007/ s43032-022-01046-2.
  14. Quinn P., Margalit R. Beneficial effects of coculture with cumulus cells on blastocyst formation in a prospective trial with supernumerary human embryos. J. Assist. Reprod. Genet. 1996; 13(1): 9-12. https://dx.doi.org/10.1007/BF02068862.
  15. Benkhalifa M., Demirol A., Sari T., Balashova E., Tsouroupaki M., Giakoumakis Y., Gurgan T. Autologous embryo-cumulus cells co-culture and blastocyst transfer in repeated implantation failures: a collaborative prospective randomized study. Zygote. 2012; 20(2): 173-80. https://dx.doi.org/10.1017/S0967199411000062.
  16. Vendrell-Flotats M., García-Martínez T., Martínez-Rodero I., López-Béjar M., LaMarre J., Yeste M., Mogas T. In vitro maturation in the presence of Leukemia Inhibitory Factor modulates gene and miRNA expression in bovine oocytes and embryos. Sci. Rep. 2020; 10(1): 17777. https://dx.doi.org/10.1038/ s41598-020-74961-6.
  17. Babayev E., Duncan F.E. Age-associated changes in cumulus cells and follicular fluid: the local oocyte microenvironment as a determinant of gamete quality. Biol. Reprod. 2022; 106(2): 351-65. https://dx.doi.org/10.1093/biolre/ ioab241.
  18. Carles M., Lefranc E., Bosquet D., Capelle S., Scheffler F., Copin H., Cabry R., Benkhalifa M. In vitro maturation of oocytes from stimulated IVF-ICSI cycles using autologous cumulus cell co-culture: A preliminary study. Morphologie. 2022 Jun 25: S1286-0115(22)00028-5. https://dx.doi.org/10.1016/ j.morpho.2022.02.002.
  19. Kattal N., Cohen J., Barmat L.I. Role of coculture in human in vitro fertilization: a meta-analysis. Fertil. Steril. 2008; 90(4): 1069-76. https://dx.doi.org/10.1016/ j.fertnstert.2007.07.1349.
  20. Kumar K., Venturas M., Needleman D.J., Racowsky C., Wells D. Extensive analysis of mitochondrial DNA quantity and sequence variation in human cumulus cells and assisted reproduction outcomes. Hum. Reprod. 2021; 37(1): 66-79. https://dx.doi.org/10.1093/humrep/deab231.
  21. Cadenas J., Pors S.E., Nikiforov D., Zheng M., Subiran C., Bøtkjær J.A. et al. Validating reference gene expression stability in human ovarian Follicles, Oocytes, Cumulus Cells, Ovarian Medulla, and Ovarian cortex tissue. Int. J. Mol. Sci. 2022; ;23(2): 886. https://dx.doi.org/10.3390/ijms23020886.
  22. Caponnetto A., Battaglia R., Ferrara C., Vento M.E., Borzì P., Paradiso M. et al.; Italian Society of Embryology, Reproduction, Research (SIERR). Down-regulation of long non-coding RNAs in reproductive aging and analysis of the lncRNA-miRNA-mRNA networks in human cumulus cells. J. Assist. Reprod. Genet. 2022; 39(4): 919-31. https://dx.doi.org/10.1007/s10815-022-02446-8.
  23. Ekart J., McNatty K., Hutton J., Pitman J. Ranking and selection of MII oocytes in human ICSI cycles using gene expression levels from associated cumulus cells. Hum. Reprod. 2013; 28(11): 2930-42. https://dx.doi.org/10.1093/humrep/det357.
  24. Zorina I.M., Eldarov C.M., Yarigina S.A., Makarova N.P., Trofimov D.Yu., Smolnikova V.Yu., Kalinina E.A., Bobrov M.Yu. Metabolomic profiling in culture media of day-5 human embryos. Biomedical Chemistry. 2017; 63(5): 385-91. (in Russian).
  25. Ibragimova L.K., Smol'nikova V.Yu., El'darov Ch.M., Bobrov M.Yu., Agadzhanyan D.S., Romanov E.A., Kalinina E.A. Metabolomic profile of follicular fluid and embryo culture media in patients with extragenital endometriosis. Obstetrics and Gynecology. 2021; (11): 114-24. (in Russian). https://dx.doi.org/10.18565/ aig.2021.11.114-124.
  26. Iarygina S.A., Smolnikova V.Yu., Bobrov M.Yu., Eldarov Ch.M., Makarova N.P. Embryo cultivation in the medium containing granulocyte-macrophage colony-stimulating factor in the ART programs. Obstetrics and Gynecology. 2019; (1): 50-4. (in Russian). https://dx.doi.org/10.18565/aig.2019.1.50-54.
  27. Bhadarka H.K., Patel N.H., Patel N.H., Patel M., Patel K.B., Sodagar N.R. et al. Impact of embryo co-culture with cumulus cells on pregnancy & implantation rate in patients undergoing in vitro fertilization using donor oocyte. Indian J. Med. Res. 2017; 146(3): 341-5. https://dx.doi.org/10.4103/ijmr.IJMR_1702_15.
  28. Saito H., Hirayama T., Koike K., Saito T., Nohara M., Hiroi M. Cumulus mass maintains embryo quality. Fertil. Steril. 1994; 62(3): 555-8.
  29. Carrell D.T., Peterson C.M., Jones K.P., Hatasaka H.H., Udoff L.C., Cornwell C.E. et al. A simplified coculture system using homologous, attached cumulus tissue results in improved human embryo morphology and pregnancy rates during in vitro fertilization. J. Assist. Reprod. Genet. 1999; 16(7): 344-9. https://dx.doi.org/10.1023/a:1020533711711.
  30. Kim M.J., Kim Y.S., Kim Y.J., Lee H.R., Choi K.H., Park E.A. et al. Upregulation of low-density lipoprotein receptor of the steroidogenesis pathway in the cumulus cells is associated with the maturation of oocytes and achievement of pregnancy. Cells. 2021; 10(9): 2389. https://dx.doi.org/10.3390/cells10092389.
  31. Benkhalifa M., Demirol A., Sari T., Balashova E., Tsouroupaki M., Giakoumakis Y., Gurgan T. Autologous embryo-cumulus cells co-culture and blastocyst transfer in repeated implantation failures: a collaborative prospective randomized study. Zygote. 2012, 20(2): 173-80. https://dx.doi.org/10.1017/S0967199411000062.
  32. Virant-Klun I., Bauer C., Ståhlberg A., Kubista M., Skutella T. Human oocyte maturation in vitro is improved by co-culture with cumulus cells from mature oocytes. Reprod. Biomed. Online. 2018; 36(5): 508-23. https://dx.doi.org/10.1016/j.rbmo.2018.01.011.
  33. Domínguez F., Gadea B., Esteban F.J., Horcajadas J.A., Pellicer A., Simón C. Comparative protein-profile analysis of implanted versus non-implanted human blastocysts. Hum. Reprod. 2008; 23(9): 1993-2000. https://dx.doi.org/10.1093/humrep/den205.
  34. Houghton F.D., Hawkhead J.A., Humpherson P.G., Hogg J.E., Balen A.H., Rutherford A.J., Leese H.J. Non-invasive amino acid turnover predicts human embryo developmental capacity. Hum. Reprod. 2002; 17(4): 999-1005. https://dx.doi.org/10.1093/humrep/17.4.999. Erratum in Hum. Reprod. 2003; 18: 1756-7.
  35. Chen C.Y., Hwu Y.M., Weng Y.W., Lu C.H., Chen Y.J., Sun F.J. Clinical application of immunomagnetic reduction for quantitative analysis of beta-subunit of human chorionic gonadotropin in blastocyst culture media to differentiate embryo quality. Clin. Chim. Acta. 2019; 491: 46-51. https://dx.doi.org/10.1016/j.cca.2019.01.012.
  36. Lundin K., Ahlström A. Quality control and standardization of embryo morphology scoring and viability markers. Reprod. Biomed. Online. 2015; 31(4): 459-71. https://dx.doi.org/10.1016/j.rbmo.2015.06.026.
  37. Seli E., Sakkas D., Scott R., Kwok S.C., Rosendahl S.M., Burns D.H. Noninvasive metabolomic profiling of embryo culture media using Raman and near-infrared spectroscopy correlates with reproductive potential of embryos in women undergoing in vitro fertilization. Fertil. Steril. 2007; 88(5): 1350-7. https://dx.doi.org/10.1016/j.fertnstert.2007.07.1390.
  38. Wallace M., Cottell E., Cullinane J., McAuliffe F.M., Wingfield M., Brennan L. 1H NMR based metabolic profiling of day 2 spent embryo media correlates with implantation potential. Syst. Biol. Reprod. Med. 2014; 60: 58-63.
  39. Morris M.B., Ozsoy S., Zada M., Zada M., Zamfirescu R.C., Todorova M.G., Day M.L. Selected amino acids promote mouse pre-implantation embryo development in a growth factor-like manner. Front. Physiol. 2020; 11: 140. https://dx.doi.org/10.3389/fphys.2020.00140.
  40. Ménézo Y., Lichtblau I., Elder K. New insights into human pre-implantation metabolism in vivo and in vitro. J. Assist. Reprod. Genet. 2013; 30(3): 293-303. https://dx.doi.org/10.1007/s10815-013-9953-9.
  41. Alexiou M., Leese H.J. Purine utilisation, de novo synthesis and degradation in mouse preimplantation embryos. Development. 1992; 114(1): 185-92. https://dx.doi.org/10.1242/dev.114.1.185.
  42. Ménézo Y., Lichtblau I., Lu S., Hoestje S.M., Choo E., Epner D.E. Induction of caspase dependant and independant apoptosis in response to methionine restriction. Int. J. Oncol. 2003; 22(2): 415-20.
  43. Brusentsev E.Y., Mokrousova V.I., Igonina T.N., Rozhkova I.N., Amstislavsky S.Ya. Role of lipid droplets in the development of oocytes and preimplantation embryos in mammals. Russ. J. Dev. Biol. 2019; 50(5): 297-305. (in Russian).
  44. Dunning K.R., Russell D.L., Robker R.L. Lipids and oocyte developmental competence: the role of fatty acids and β-oxidation. Reproduction. 2014; 148(1): R15-27. https://dx.doi.org/10.1530/REP-13-0251.
  45. McKeegan P.J., Sturmey R.G. The role of fatty acids in oocyte and early embryo development. Reprod. Fertil. Dev. 2011; 24(1): 59-67. https://dx.doi.org/10.1071/RD11907.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. Multivariate OPLS-DA statistical analysis comparing a group of culture media containing cumulus cells with control media without cells

Download (57KB)

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies