The role of vasoactive, pro-, and antithrombogenic endothelial factors in the regulation of oocyte maturation in the treatment of infertility

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Infertility is a global problem of the present-day world, whereas its incidence tends to increase. To date, one of the most effective methods for infertility treatment is assisted reproductive technologies (ART), the success of which depends on the quality and quantity of oocytes obtained. An important role in the maturation of oocytes, the fertilization, and subsequent development of an embryo is played by the oocyte microenvironment, in the creation of which the vascular endothelium is involved, by producing biological active substances. Endothelial dysfunction can affect the formation of oocytes and is a cause of premature ovarian insufficiency, reproductive system diseases and their fertility.

The review shows the role of vasoregulatory, pro-, and antithrombogenic factors synthesized by the endothelium in the maturation of oocytes in the treatment of infertility caused by a recurrent implantation failure, polycystic ovary syndrome.

Conclusion: Different female reproductive system diseases and their associated infertility are frequently accompanied by endothelial dysfunction. Superovulation induction in the treatment of infertility with ART methods can also contribute to the disruption of adaptive mechanisms and to impaired functional activity of the vascular endothelium due to the high estrogen and progestogen load.

In this connection, the determination of the markers of dysfunction of the endothelium and the evaluation of its functioning are necessary for clinicians to select personalized treatment. Taking into account the individual characteristics of an endothelial response to gonadotropin stimulation for ovulation induction will enable to elaborate new recommendations and standards for infertility treatment with ART methods, which will make them more safe and effective.

Full Text

Restricted Access

About the authors

Valentina N. Perfilova

Volgograd State Medical University, Ministry of Health of the Russian Federation; Volgograd Medical Research Center

Email: vnperfilova@mail.ru
ORCID iD: 0000-0002-2457-8486

Dr. Sci. (Bio), Professor, Professor at the Department of Pharmacology and Pharmacy of ICMPE

Russian Federation, Volgograd; Volgograd

Elena A. Muzyko

Volgograd State Medical University, Ministry of Health of the Russian Federation

Author for correspondence.
Email: muzyko.elena@mail.ru
ORCID iD: 0000-0003-0535-9787

PhD, Associate Professor at the Department of Pathophysiology, Clinical Pathophysiology

Russian Federation, Volgograd

Margarita V. Kustova

Volgograd State Medical University, Ministry of Health of the Russian Federation

Email: kustova13@mail.com
ORCID iD: 0000-0002-6287-4120

Assistant at the Department of Theoretical Biochemistry with a Course of Clinical Biochemistry

Russian Federation, Volgograd

Ksenia Yu. Tikhaeva

"Genome Volga" LLC

Email: tikhaeva34@gmail.com
ORCID iD: 0000-0002-1956-6448

PhD, obstetrician-gynecologist, specialist in human reproduction

Russian Federation, Volgograd

References

  1. Смелов П.А., ред. Здравоохранение в России. 2021: Статистический сборник. М.: Росстат; 2021. 171с. [Smelov P.A., ed. Healthcare in Russia. 2021: Stat. Collect. Moscow: Rosstat; 2021. 171p. (in Russian)].
  2. Lee S.H. Effects of human endothelial progenitor cell and its conditioned medium on oocyte development and subsequent embryo development. Int. J. Mol. Sci. 2020; 21(21): 7983. https://dx.doi.org/10.3390/ijms21217983.
  3. Lee S.H., Oh H.J., Kim M.J., Setyawan E.M.N., Choi Y.B., Lee B.C. Effect of co-culture human endothelial progenitor cells with porcine oocytes during maturation and subsequent embryo development of parthenotes in vitro. Mol. Reprod. Dev. 2018; 85(4): 336-47. https://dx.doi.org/10.1002/mrd.22969.
  4. Cui L., Shen J., Fang L., Mao X., Wang H., Ye Y. Endothelin-1 promotes human germinal vesicle-stage oocyte maturation by downregulating connexin-26 expression in cumulus cells. Mol. Hum. Reprod. 2018; 24(1): 27-36. https://dx.doi.org/10.1093/molehr/gax058.
  5. Ko C., Meidan R., Bridges P.J. Why two endothelins and two receptors for ovulation and luteal regulation? Life Sci. 2012; 91(13-14): 501-6. https://dx.doi.org/10.1016/j.lfs.2012.05.010.
  6. Cacciatore B., Simberg N., Tiitinen A., Ylikorkala O. Evidence of interplay between plasma endothelin-1 and 17 beta-estradiol in regulation of uterine blood flow and endometrial growth in infertile women. Fertil. Steril. 1997; 67(5): 883-8. https://dx.doi.org/10.1016/s0015-0282(97)81401-x.
  7. Imbar T., Klipper E., Greenfield C., Hurwitz A., Haimov-Kochman R., Meidan R. Altered endothelin expression in granulosa-lutein cells of women with polycystic ovary syndrome. Life Sci. 2012; 91(13-14): 703-9. https://dx.doi.org/10.1016/j.lfs.2012.06.006.
  8. Szymanska M., Shrestha K., Girsh E., Harlev A., Eisenberg I., Imbar T. et al. Reduced endothelin-2 and hypoxic signaling pathways in granulosa-lutein cells of PCOS women. Int. J. Mol. Sci. 2021; 22(15): 8216. https://dx.doi.org/10.3390/ijms22158216.
  9. Liu Y., Hao H., Lan T., Jia R., Cao M., Zhou L. et al. Physiological and pathological roles of Ang II and Ang-(1-7) in the female reproductive system. Front. Endocrinol. (Lausanne). 2022; 13: 1080285. https://dx.doi.org/10.3389/fendo.2022.1080285.
  10. Giometti I.C., Bertagnolli A.C., Ornes R.C., da Costa L.F., Carambula S.F., Reis A.M. et al. Angiotensin II reverses the inhibitory action produced by theca cells on bovine oocyte nuclear maturation. Theriogenology. 2005; 63(4): 1014-25. https://dx.doi.org/10.1016/j.theriogenology.2004.05.022.
  11. Arefi S., Mottaghi S., Sharifi A.M. Studying the correlation of renin-angiotensin-system (RAS) components and insulin resistance in polycystic ovary syndrome (PCOs). Gynecol. Endocrinol. 2013; 29(5): 470-3. https://dx.doi.org/10.3109/09513590.2013.769513.
  12. Surcel M., Surcel M., Zlatescu-Marton C., Micu R., Nemeti G.I., Axente D.D. et al. The role of high follicular levels of angiotensin II and vascular endothelial growth factor in anticipating the development of severe ovarian hyperstimulation syndrome in patients with prophylactic cabergoline therapy undergoing an in vitro fertilization procedure. Acta Endocrinol. (Buchar). 2020; 16(1): 30-6. https://dx.doi.org/10.4183/aeb.2020.30.
  13. Ata B., Yakin K., Alatas C., Urman B. Dual renin-angiotensin blockage and total embryo cryopreservation is not a risk-free strategy in patients at high risk for ovarian hyperstimulation syndrome. Fertil. Steril. 2008; 90(3): 531-6. https://dx.doi.org/10.1016/j.fertnstert.2007.07.1309.
  14. Zhang Q., Yu S., Lam M.M.T., Poon T.C.W., Sun L., Jiao Y. et al. Angiotensin II promotes ovarian cancer spheroid formation and metastasis by upregulation of lipid desaturation and suppression of endoplasmic reticulum stress. J. Exp. Clin. Cancer Res. 2019; 38(1): 116. https://dx.doi.org/10.1186/ s13046-019-1127-x.
  15. Basini G., Francesca G. Nitric oxide in follicle development and oocyte competence. Reproduction. 2015; 150(1): R1-R9. https://dx.doi.org/10.1530/REP-14-0524.
  16. Ghimire K., Altmann H.M., Straub A.C., Isenberg J.S. Nitric oxide: what's new to NO? Am. J. Physiol. Cell. Physiol. 2017;312(3):C254-C262. https://dx.doi.org/10.1152/ajpcell.00315.2016.
  17. Budani M.C., Gian M.T. Novel insights on the role of nitric oxide in the ovary: a review of the literature. Int. J. Environ. Res. Public Health. 2021;18(3):980. https://dx.doi.org/10.3390/ijerph18030980.
  18. Zhao P., Song Z., Wang Y., Cai H., Du X., Li C. et al. The endothelial nitric oxide synthase/cyclic guanosine monophosphate/protein kinase G pathway activates primordial follicles. Aging (Albany NY). 2020;13(1):1096-119. https://dx.doi.org/10.18632/aging.202235.
  19. Meng C. Nitric oxide (NO) levels in patients with polycystic ovary syndrome (PCOS): a meta-analysis. J. Int. Med. Res. 2019;47(9):4083-94. https://dx.doi.org/10.1177/0300060519864493.
  20. Krishna M.B., Joseph A., Thomas P.L., Dsilva B., Pillai S.M., Laloraya M. Impaired arginine metabolism coupled to a defective redox conduit contributes to low plasma nitric oxide in polycystic ovary syndrome. Cell. Physiol. Biochem. 2017;43(5):1880-92. https://dx.doi.org/10.1159/000484107.
  21. Mahran A., Abdelmeged A., Shawki H., Moheyelden A., Ahmed A.M. Nitric oxide donors improve the ovulation and pregnancy rates in anovulatory women with polycystic ovary syndrome treated with clomiphene citrate: A RCT. Int. J. Reprod. Biomed. 2016 Jan;14(1):9-14.
  22. Camp O.G., Goud A.P., Goud P.T., Bai D., Awonuga A., Abu-Soud H.M. Diminishing oocyte quality with advancing age is associated with deficiency of nitric oxide synthase cofactors, tetrahydrobiopterin and zinc, in mouse oocytes. F. S. Sci. 2023;S2666-335X(23)00010-1. https://dx.doi.org/10.1016/ j.xfss.2023.02.002.
  23. Hassani F., Karami M., Nadoushan M.R.J., Yazdi P.E. Nitric oxide-induced polycystic ovaries in the Wistar rat. Int. J. Fertil. Steril. 2012;6(2):111-6.
  24. Lee T.H., Wu M.Y., Chen M.J., Chao K.H., Ho H.N., Yang Y.S. Nitric oxide is associated with poor embryo quality and pregnancy outcome in in vitro fertilization cycles. Fertil. Steril. 2004;82(1):126-31. https://dx.doi.org/10.1016/j.fertnstert.2004.02.097.
  25. Tamanini C., Basini G., Grasselli F., Tirelli M. Nitric oxide and the ovary. J. Anim. Sci. 2003;81(suppl.2):E1-E7. https://dx.doi.org/10.2527/ 2003.8114_suppl_2E1x.
  26. Huang J.C., Wun W.S., Goldsby J.S., Wun I.C., Noorhasan D., Wu K.K. Stimulation of embryo hatching and implantation by prostacyclin and peroxisome proliferator-activated receptor δ activation: implication in IVF. Hum. Reprod. 2007;22(3):807-14. https://dx.doi.org/10.1093/humrep/del429.
  27. Huang J.C., Wun W.S. A., Goldsby J.S., Egan K., FitzGerald G.A., Wu K.K. Prostacyclin receptor signaling and early embryo development in the mouse. Hum. Reprod. 2007;22(11):2851-6. https://dx.doi.org/10.1093/humrep/dem304.
  28. Бицадзе В.О., Акиньшина С.В., Макацария А.Д., Андреева М.Д. Вспомогательные репродуктивные технологии и ятрогенные тромботические осложнения. Вопросы гинекологии, акушерства и перинатологии. 2014;13(1):49-59. [Bitsadze V.O., Akin'shina S.V., Makatsariya A.D., Andreeva M.D. Assisted reproductive technologies and iatrogenic thrombotic complications. Issues of Gynecology, Obstetrics and Perinatology. 2014;13(1):49-59. (in Russian)].
  29. Roudebush W.E., Massey J.B., Kort H.I., Elsner C.W., Toledo A.A., Mitchell-Leef D. et al. Exposure of preimplantation embryos to platelet-activating factor increases birth rate. J. Assist. Reprod. Genet. 2004;21(8):297-300. https://dx.doi.org/10.1023/b:jarg.0000043703.73207.25.
  30. Mahdian S., Pirjani R., Favaedi R., Movahedi M., Moini A., Shahhoseini M. Platelet-activating factor and antiphospholipid antibodies in recurrent implantation failure. J. Reprod. Immunol. 2021;143:103251. https://dx.doi.org/10.1016/j.jri.2020.103251.
  31. Ogawa S., Minakami H., Araki S., Ohno T., Motoyama M., Shibahara H. et al. A rise of the serum level of von Willebrand factor occurs before clinical manifestation of the severe form of ovarian hyperstimulation syndrome. J. Assist. Reprod. Genet. 2001;18(2):114-9. https://dx.doi.org/10.1023/ a:1026590910462.
  32. Koiou E., Tziomalos K., Katsikis I., Dinas K., Tsourdi E.A., Kandaraki E.A. et al. Plasma von Willebrand factor antigen levels are elevated in the classic phenotypes of polycystic ovary syndrome. Hormones (Athens). 2012;11(1):77-85. https://dx.doi.org/10.1007/BF03401540.
  33. Moin A.S.M., Sathyapalan T., Diboun I., Elrayess M.A., Butler A.E., Atkin S.L. Metabolic consequences of obesity on the hypercoagulable state of polycystic ovary syndrome. Sci. Rep. 2021;11(1):5320. https://dx.doi.org/10.1038/ s41598-021-84586-y.
  34. Shan Y., Wang A., Sun Y., Jiang W., Pang B., An Z. et al. Coagulation and fibrinolytic indices during the first trimester of pregnancy in women with polycystic ovary syndrome: a preliminary study. Reprod. Sci. 2013;20(11):1390-7. https://dx.doi.org/10.1177/1933719113485293.
  35. Burchall G.F., Pouniotis D.S., Teede H.J., Ranasinha S., Walters K.A., Piva T.J. Expression of the plasminogen system in the physiological mouse ovary and in the pathological polycystic ovary syndrome (PCOS) state. Reprod. Biol. Endocrinol. 2019;17(1):33. https://dx.doi.org/10.1186/s12958-019-0472-0.
  36. Devin J.K., Johnson J.E., Eren M., Gleaves L.A., Bradham W.S., Bloodworth J.R. Jr. et al. Transgenic overexpression of plasminogen activator inhibitor-1 promotes the development of polycystic ovarian changes in female mice. J. Mol. Endocrinol. 2007;39(1):9-16. https://dx.doi.org/10.1677/JME-06-0057.
  37. Li S., Qian Y., Pei Y., Wu K., Lu S. Coagulation and fibrinolysis biomarkers as potential indicators for the diagnosis and classification of ovarian hyperstimulation syndrome. Front. Med. (Lausanne). 2021;8:720342. https://dx.doi.org/10.3389/fmed.2021.720342.
  38. Chen L.H., Lin C.P., Wu H.M., Chu P.H. Endothelial dysfunction in subfertile women with polycystic ovary syndrome. Reprod. Biomed. Online. 2023;46(2):391-398. https://dx.doi.org/10.1016/j.rbmo.2022.11.013.
  39. Кирющенков П.А., Ходжаева З.С., Тетруашвили Н.К., Донников А.Е., Белоусов Д.М., Андамова Е.В., Тамбовцева М.А. Значение полиморфизма гена ингибитора активатора плазминогена I типа (SERPINE1: 5G> 4G) при отслойках хориона и плаценты на ранних сроках беременности. Акушерство и гинекология. 2012;5:34-7. [Kiryushchenkov P.A., Khodzhayeva Z.S., Tetruashvili N.K., Donnikov A.E., Belousov D.M., Andamova E.V., Tambovtseva M.A. Significance of plasminogen activator inhibitor type 1 gene (SERPINE1: 5G>4G) polymorphism in chorionic detachment and placental abruption in early pregnancy. Obstetrics and Gynecology. 2012;(5):34-37. (in Russian)].

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.

Download (90KB)

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies