Diagnostic significance of determining the expression of energy metabolism genes in fetal growth retardation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective: To determine the level of expression of energy metabolism genes, namely visfatin (NAMPT), ghrelin (GHRL) and leptin (LEP) in maternal and umbilical cord blood and in the placenta in case of fetal growth retardation.

Materials and methods: The study included 52 pregnant women: the main group consisted of 27 patients diagnosed with fetal growth retardation postnatally; the control group included 25 women with normal course of pregnancy. Real-time PCR was used to determine the expression level of energy metabolism genes.

Results: The level of expression of the NAMPT and GHRL genes in maternal blood was found to be statistically significantly reduced in fetal growth retardation (p=0.012 and p=0.019, respectively). The level of expression of the NAMPT and GHRL genes in umbilical cord blood was also reduced in comparison with the control group, but it was not statistically significant (p=0.30 and p=0.23, respectively). LEP gene expression in maternal and umbilical cord blood was not found. The level of leptin expression in the placenta was found to be statistically significantly increased in the main group (p=0.045), though these differences were not associated with gestational age at the time of delivery.

Conclusion: The decreased levels of expression of the NAMPT and GHRL genes in maternal blood can become an objective marker for diagnosing fetal growth retardation during pregnancy. The increased expression of LEP in the placenta in fetal growth retardation may give a better understanding of its pathogenesis and new opportunities for its diagnosis.

Full Text

Restricted Access

About the authors

Natalia E. Kan

Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: kan-med@mail.ru
ORCID iD: 0000-0001-5087-5946
SPIN-code: 5378-8437
Scopus Author ID: 57008835600
ResearcherId: B-2370-2015

Dr. Med. Sci., Professor, MD, PhD, Deputy Director of Science

Russian Federation, Moscow

Ekaterina E. Soldatova

Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Author for correspondence.
Email: katerina.soldatova95@bk.ru
ORCID iD: 0000-0001-6463-3403

Postgraduate Student

Russian Federation, Moscow

Victor L. Tyutyunnik

Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: tioutiounnik@mail.ru
ORCID iD: 0000-0002-5830-5099
SPIN-code: 1963-1359
Scopus Author ID: 56190621500
ResearcherId: B-2364-2015

Professor, MD, PhD, Leading Researcher of Center of Scientific and Clinical Researches

Russian Federation, Moscow

Maria V. Volochaeva

Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: m_volochaeva@oparina4.ru
ORCID iD: 0000-0001-8953-7952

PhD, Senior Researcher, Department of Regional Cooperation and Integration, Physician at the 1st Maternity Department

Russian Federation, Moscow

Alsu A. Sadekova

Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: a_sadekova@oparina4.ru
ORCID iD: 0000-0003-4726-7477

PhD, Researcher at the Cytology Laboratory

Russian Federation, Moscow

Aleksey M. Krasnyi

Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: alexred@list.ru
ORCID iD: 0000-0001-7883-2702

PhD (Bio), Head of the Cytology Laboratory

Russian Federation, Moscow

References

  1. Gluckman P.D., Hanson M.A., Pinal C. The developmental origins of adult disease. Matern. Child Nutr. 2005; 1(3): 130-41. https://dx.doi.org/10.1111/j.1740-8709.2005.00020.x.
  2. Леонова И. А., Иванов Д. О. Фетальное программирование и ожирение у детей. Детская медицина Северо-Запада 2015; 6(3): 28-41. [Leonova I.A., Ivanov D.O. Fetal programming and obesity in children. Children's Medicine of the North-West. 2015; 6(3): 28-41. (in Russian)].
  3. Железова М.Е., Зефирова Т.П., Канюкова С.С. Задержка роста плода: современные подходы к диагностике и ведению беременности. Практическая медицина. 2019; 17(4): 8-14. [Zhelezova M.E., Zefirova T.A., Kanyukov S.S. Fetal growth restriction: modern approaches to the diagnosis and management of pregnancy. Practical Medicine. 2019; 17(4): 8-14. (in Russian)]. https://dx.doi.org/10.32000/2072-1757-2019-4-8-14.
  4. Dessì A., Pravettoni C., Cesare Marincola F., Schirru A., Fanos V. The biomarkers of fetal growth in intrauterine growth retardation and large for gestational age cases: from adipocytokines to a metabolomic all-in-one tool. Expert Rev. Proteomics. 2015; 12(3): 309-16. https://dx.doi.org/10.1586/ 14789450.2015.1034694.
  5. Кан Н.Е., Тютюнник В.Л., Хачатрян З.В., Садекова А.А., Красный А.М. Метилирование генов TLR2 и импринтинг-контролирующей области IGF2/H19 в плазме крови при задержке роста плода. Акушерство и гинекология. 2021; 5: 79-84. [Kan N.E., Tyutyunnik V.L., Khachatryan Z.V., Sadekova A.A., Krasnyi A.M. Methylation of the TLR2 genes and the IGF2/H19 imprinting-control region in blood plasma in fetal growth retardation. Obstetrics and Gynecology. 2021; (5): 79-84. (in Russian)]. https://dx.doi.org/10.18565/aig.2021.5.79-84.
  6. Cekmez F., Canpolat F.E., Pirgon O., Aydemir G., Tanju I.A., Genc F.A. et al. Adiponectin and visfatin levels in extremely low birth weight infants; they are also at risk for insulin resistance. Eur. Rev. Med. Pharmacol. Sci. 2013; 17(4): 501-6.
  7. Lee M.H., Jeon Y.J., Lee S.M., Park M.H., Jung S.C., Kim Y.J. Placental gene expression is related to glucose metabolism and fetal cord blood levels of insulin and insulin-like growth factors in intrauterine growth restriction. Early Hum. Dev. 2010; 86(1): 45-50. https://dx.doi.org/10.1016/ j.earlhumdev.2010.01.001.
  8. Maymó J.L., Pérez Pérez A., Gambino Y., Calvo J.C., Sánchez-Margalet V., Varone C.L. Review: Leptin gene expression in the placenta--regulation of a key hormone in trophoblast proliferation and survival. Placenta. 2011; 32(Suppl. 2): S146-53. https://dx.doi.org/10.1016/ j.placenta.2011.01.004.
  9. Morgan S.A., Bringolf J.B., Seidel E.R. Visfatin expression is elevated in normal human pregnancy. Peptides. 2008; 29(8): 1382-9. https://dx.doi.org/10.1016/ j.peptides.2008.04.010.
  10. Mazaki-Tovi S., Romero R., Kusanovic J.P., Vaisbuch E., Erez O., Than N.G. et al. Maternal visfatin concentration in normal pregnancy. J. Perinat. Med. 2009; 37(3): 206-17. https://dx.doi.org/10.1515/JPM.2009.054.
  11. Briana D.D., Malamitsi-Puchner A. The role of adipocytokines in fetal growth. Ann. N. Y. Acad. Sci. 2010; 1205: 82-7. https://dx.doi.org/10.1111/ j.1749-6632.2010.05650.x.
  12. Moschen A.R., Kaser A., Enrich B., Mosheimer B., Theurl M., Niederegger H., Tilg H. Visfatin, an adipocytokine with proinflammatory and immunomodulating properties. J. Immunol. 2007; 178(3): 1748-58. https://dx.doi.org/10.4049/jimmunol.178.3.1748.
  13. Pavlová T., Novák J., Bienertová-Vašků J. The role of visfatin (PBEF/Nampt) in pregnancy complications. J. Reprod. Immunol. 2015; 112: 102-10. https://dx.doi.org/10.1016/j.jri.2015.09.004.
  14. Martín-Estal I., de la Garza R.G., Castilla-Cortázar I. Intrauterine growth retardation (IUGR) as a novel condition of insulin-like growth factor-1 (IGF-1) deficiency. Rev. Physiol. Biochem. Pharmacol. 2016; 170: 1-35. https://dx.doi.org/10.1007/112_2015_5001.
  15. Krasnyi A.M., Sadekova A.A., Smolnova T.Y., Chursin V.V., Buralkina N.A., Chuprynin V.D., Yarotskaya E., Pavlovich S.V.., Sukhikh G.T. The levels of Ghrelin, Glucagon, Visfatin and Glp-1 Are Decreased in the Peritoneal Fluid of women with endometriosis along with the increased expression of the CD10 protease by the macrophages. Int. J. Mol. Sci. 2022; 23(18): 10361. https://dx.doi.org/ 10.3390/ijms2318103611.
  16. Barrientos G., Toro A., Moschansky P., Cohen M., Garcia M.G., Rose M. et al. Leptin promotes HLA-G expression on placental trophoblasts via the MEK/Erk and PI3K signaling pathways. Placenta. 2015; 36(4): 419-26. https://dx.doi.org/10.1016/j.placenta.2015.01.006.
  17. Stefaniak M., Dmoch-Gajzlerska E. Maternal serum and cord blood leptin concentrations at delivery in normal pregnancies and in pregnancies complicated by intrauterine growth restriction. Obes. Facts. 2022; 15(1): 62-9. https://dx.doi.org/10.1159/000519609.
  18. Karakosta P., Roumeliotaki T., Chalkiadaki G., Sarri K., Vassilaki M., Venihaki M. et al. Cord blood leptin levels in relation to child growth trajectories. Metabolism. 2016; 65(6): 874-82. https://dx.doi.org/10.1016/j.metabol.2016.03.003.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1

Download (12KB)
3. Fig. 2

Download (16KB)
4. Fig. 3

Download (11KB)
5. Fig. 4

Download (10KB)

Copyright (c) 2023 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies