Chemomicrobiomic analysis of myoinositol, D-chiroinositol, folic acid and pyroglutamate anion in the nutritional support of female reproductive system

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Background: Myoinositol (MI) and D-chiroinositol (DCI) are used in the treatment of female reproductive disorders and may support the growth of beneficial microbiota.

Objective: To conduct a comparative chemomicrobiomic analysis of MI, DCI and their synergists, namely folic acid (FA) and manganese pyroglutamate (PM) taken orally.

Materials and methods: Chemomicrobiomic analysis included assessments of the accumulation of molecules in various tissues, the area under the growth curve of commensal bacteria (AUC), effects on metabolic microbiota, and minimum inhibitory concentrations (MIC) for pathogenic bacterial strains.

Results: MI, DCI, FA and PM were found to have a synergistic effect on the human microbiome. The greatest contribution to the support of the beneficial microbiota was made by MI (AUC 0.74±0.17 c.u.), followed by DHI and FC (AUC ranged from 0.68 to 0.71 c.u.). Normobiota most actively process FA (19.3±10.5%) and DCI (15.3±11.5%), while MI (13.7±7.7%) and PM (13.2±11.3%) are processed least actively. The most active bacteria metabolizers of the above substances were various strains of Bacteroides fragilis (28–34%). According to the results of chemomicrobiomic analysis, MI, DCI, FA, and PM can exhibit prebiotic properties and support the growth of commensals from the genera Bacteroides, Streptococci, and Bifidobacteria. Since MI, DHI, FA and PM have prebiotic properties, they can support the growth of the normal microflora which is important for the regulation of carbohydrate metabolism. The above substances (especially DHI) can inhibit the growth of pathogenic microorganisms, namely Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus pneumoniae (MIC values are about 20–30 µg/ml).

Conclusion: The analysis made it possible to establish that the combined intake of MI, DCI, FA and PM contributes to the maintenance of a healthy microbiome which is important for a woman’s health, especially during pregnancy and perimenopause.

Full Text

Restricted Access

About the authors

Ivan Yu. Torshin

Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences

Email: unesco.gromova@gmail.com
ORCID iD: 0000-0002-2659-7998

PhD in Applied Mathematics, Institute of Pharmacoinformatics, Senior Researcher at the Department of Intellectual Systems

Russian Federation, Moscow

Andrey N. Gromov

Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences

Email: unesco.gromova@gmail.com
ORCID iD: 0000-0001-7507-191X
SPIN-code: 8034-7910
Scopus Author ID: 7102053964
ResearcherId: C-7476-2018

research engineer

Russian Federation, Moscow

Olga A. Gromova

Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences

Author for correspondence.
Email: unesco.gromova@gmail.com
ORCID iD: 0000-0002-7663-710X

Dr. Med. Sci., Professor, Science Нead of the Institute of Pharmacoinformatics, Leading Researcher at the Department of Intellectual Systems

Russian Federation, Moscow

References

  1. Лиманова О.А., Громова О.А., Торшин И.Ю., Громов А.Н., Гришина Т.Р. Систематический анализ молекулярно-физиологических эффектов миоинозитола: данные молекулярной биологии, экспериментальной и клинической медицины. Эффективная фармакотерапия. Акушерство и гинекология. 2013; 3: 4-12. [Limanova O.A., Gromova O.A.,. Torshin I.Yu, Gromov A.N., Grishina T.R. Systematic analysis of molecular mechanisms and physiological effects of myo-inositol: findings of molecular biology, experimental and clinical medicine. Effective pharmacotherapy. Obstetrics and Gynecology. 2013; (3): 4-12 (in Russian)].
  2. Larner J. D-chiro-inositol--its functional role in insulin action and its deficit in insulin resistance. Int. J. Exp. Diabetes Res. 2002; 3(1): 47-60. https://dx.doi.org/10.1080/15604280212528.
  3. Торшин И.Ю., Громова О.А., Тетруашвили Н.К. Хемотранскриптомный анализ синергизма D-хироинозитола и миоинозитола в контексте постгеномной фармакологии. Акушерство и гинекология. 2022; 9: 150-60. [Torshin I.Yu., Gromova O.A., Tetruashvili N.K. Chemotranscriptome analysis of synergism between D-chiroinositol and myoinositol in the context of postgenomic pharmacology. Obstetrics and Gynecology. 2022; (9):150-60 (in Russian)]. https://dx.doi.org/10.18565/aig.2022.9.150-160.
  4. Громова О.А., Торшин И.Ю., Уварова Е.В., Тапильская Н.И., Калачева А.Г. Систематический анализ биологических ролей и фармакологических свойств D-хироинозитола. Гинекология. 2020; 22(3): 21-8. [Gromova O.A., Torshin I.Yu., Uvarova E.V., Tapilskaya N.I., Kalacheva A.G. Systematic analysis of the biological roles and pharmacological properties of D-chiro-inositol. Gynecology. 2020; 22(3): 21-8. (in Russian)]. https://dx.doi.org/ 10.26442/20795696.2020.3.200210.
  5. Торшин И.Ю., Майорова Л.А., Уварова Е.В., Тапильская Н.И., Громова О.А. Хемореактомный анализ стереоизомеров инозитола: различные профили фармакологического действия мио-инозитола и D-хиро-инозитола при нарушениях женской репродуктивной системы. Вопросы гинекологии, акушерства и перинатологии. 2020; 19(5): 57-69. [Torshin I.Yu., Mayorova L.A., Uvarova E.V., Tapilskaya N.I., Gromova O.A. Chemoreactomic analysis of inositol stereoisomers: different profiles of pharmacological activity of myo-inositol and D-chiro-inositol in females with reproductive system disorders. Gynecology, Obstetrics and Perinatology. 2020; 19(5): 57-69. (in Russian)]. https://dx.doi.org/10.20953/1726-1678-2020-5-57-69.
  6. Громова О.А., Андреева Е.Н., Торшин И.Ю., Тапильская Н.И., Уварова Е.В. Системно-биологический анализ ролей марганца в акушерстве и гинекологии: репродуктивное здоровье женщины, регуляция менструального цикла и профилактика пороков развития плода. Вопросы гинекологии, акушерства и перинатологии. 2020; 19(1): 103-13. [Gromova O.A., Andreeva E.N., Torshin I.Yu., Tapil'skaya N.I., Uvarova E.V. A systemic biological analysis of the role of manganese in obstetrics and gynaecology: women’s reproductive health, menstrual cycle regulation and prevention of fetal malformations. Vopr. ginekol. akus.perinatol. (Gynecology, Obstetrics and Perinatology). 2020; 19(1): 103-13. (in Russian). https://dx.doi.org/10.20953/1726-1678-2020-1-103-113.
  7. Громова О.А., Торшин И.Ю., Калачева А.Г., Федотова Л.Э., Рудаков К.В. Молекулярные механизмы действия пироглутамата магния и его нейротропные эффекты. Журнал неврологии и психиатрии им. С.С. Корсакова. 2016; 116(12): 96 103. [Gromova O.A., Torshin I.Iu., Kalacheva A.G., Fedotova L.E., Rudakov K.V. Molecular mechanisms of pidolate magnesium action and its neurotropic affects. Journal of Neurology and Psychiatry named after S.S. Korsakov. 2016;116(12):96 103. (in Russian)]. https://dx.doi.org/10.17116/jnevro201611612196-103.
  8. Torshin I.Yu., Rudakov K.V. On the procedures of generation of numerical features over the splits of a set of objects and the problem of prediction of numeric target variables. Pattern Recognition and Image Analysis. 2019; 29(4): 654-67. https://dx.doi.org/10.1134/S1054661819040175.
  9. Torshin I.Yu., Rudakov K.V. On the theoretical basis of metric analysis of poorly formalized problems of recognition and classification. Pattern Recognition and Image Analysis. 2015; 25(4): 577-87. https://dx.doi.org/10.1134/S1054661815040252.
  10. Торшин И.Ю., Громова О.А., Захарова И.Н., Максимов В.А. Хемомикробиомный анализ лактитола. Экспериментальная и клиническая гастроэнтерология. 2019; 4: 111-21. [Torshin I.Yu., Gromova O.A., Zakcharova I.N., Maximov V.A. Hemomikrobiomny lactitol analysis. Experimental and Clinical Gastroenterology. 2019; (4): 111-21. (in Russian)]. https:/dx.doi.org/10.31146/1682-8658-ecg-164-4-111-121.
  11. Торшин И.Ю., Галустян А.Н., Иванова М.И., Хаджидис А.К., Громова О.А. Хемомикробиомный анализ синергизма D-маннозы и D-фруктозы в сравнении с другими метабиотиками. Эффективная фармакотерапия. 2020; 16(20): 22-31. [Torshin I.Yu., Galustyan A.N., Ivanova M.I., Khadzhidis A.K., Gromova O.A. Chemomicrobiome analysis of the synergy of D-mannose and D-fructose in comparison with other metabiotics. Effective pharmacotherapy. 2020; 16(20): 22-31. (in Russian)]. https://dx.doi.org/10.33978/ 2307-3586-2020-16-8-18.
  12. Громова О.А., Торшин И.Ю., Наумов А.В., Максимов В.А. Хемомикробиомный анализ глюкозамина сульфата, пребиотиков и нестероидных противовоспалительных препаратов. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2020; 13(3): 270-82. [Gromova O.A., Torshin I.Yu., Naumov A.V., Maksimov V.A. Chemomicrobiomic analysis of glucosamine sulfate, prebiotics and non-steroidal anti-inflammatory drugs. FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology. 2020; 13(3): 270-282. (in Russian)]. https://dx.doi.org/10.17749/2070-4909/farmakoekonomika.2020.049.
  13. Maier L., Pruteanu M., Kuhn M., Zeller G., Telzerow A., Anderson E.E. et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature. 2018; 555(7698): 623-8. https://dx.doi.org/10.1038/nature25979.
  14. Human Microbiome Project Consortium. A framework for human microbiome research. Nature. 2012; 486(7402): 215-21. https://dx.doi.org/10.1038/nature11209.
  15. The Integrative Human Microbiome Project: dynamic analysis of microbiome-host omics profiles during periods of human health and disease. Cell Host Microbe. 2014; 16(3): 276-89. https://dx.doi.org/10.1016/ j.chom.2014.08.014.
  16. Kim S., Chen J., Cheng T., Gindulyte A., He J., He S. et al. PubChem 2019 update: improved access to chemical data. Nucleic Acids Res. 2019; 47(D1): D1102-D1109. https://dx.doi.org/10.1093/nar/gky1033.
  17. Ye D., Huang J., Wu J., Xie K., Gao X., Yan K. et al. Integrative metagenomic and metabolomic analyses reveal gut microbiota-derived multiple hits connected to development of gestational diabetes mellitus in humans. Gut Microbes. 2023; 15(1): 2154552. https://dx.doi.org/10.1080/19490976.2022.2154552.
  18. Park S., Zhang T., Kang S. Fecal microbiota composition, their interactions, and metagenome function in US adults with type 2 diabetes according to enterotypes. Int. J. Mol. Sci. 2023; 24(11): 9533. https://dx.doi.org/10.3390/ijms24119533.
  19. Yue T., Tan H., Wang C., Liu Z., Yang D., Ding Y. et al. High-risk genotypes for type 1 diabetes are associated with the imbalance of gut microbiome and serum metabolites. Front. Immunol. 2022; 13: 1033393. https://dx.doi.org/10.3389/fimmu.2022.1033393.
  20. Gao S., Zhao L.H., Tian X., Kong M.W., He J.Q., Ge X.C. et al. Characteristics of gut microbiota in female patients with diabetic microvascular complications. J. Diabetes Res. 2022; 2022: 2980228. https://dx.doi.org/10.1155/2022/2980228.
  21. Ma M., Su J., Wang Y., Wang L., Li Y., Ding G. et al. Association of body mass index and intestinal (faecal) Streptococcus in adults in Xining city, China P.R. Benef. Microbes. 2022; 13(6): 465-71. https://dx.doi.org/10.3920/BM2021.0046.
  22. Kunath B.J., Hickl O., Queiros P., Martin-Gallausiaux C., Lebrun L.A., Halder R. et al. Alterations of oral microbiota and impact on the gut microbiome in type 1 diabetes mellitus revealed by integrated multi-omic analyses. Microbiome. 2022; 10(1): 243. https://dx.doi.org/10.1186/s40168-022-01435-4.
  23. Liu J., Zhou L., Sun L., Ye X., Ma M., Dou M., Shi L. Association between intestinal Prevotella copri abundance and glycemic fluctuation in patients with brittle diabetes. Diabetes Metab. Syndr. Obes. 2023; 16: 1613-21. https://dx.doi.org/10.2147/DMSO.S412872.
  24. Aljuraiban G.S., Alfhili M.A., Aldhwayan M.M., Aljazairy E.A., Al-Musharaf S. Metagenomic shotgun sequencing reveals specific human gut microbiota associated with insulin resistance and body fat distribution in Saudi women. Biomolecules. 2023; 13(4): 640. https://dx.doi.org/10.3390/ biom13040640.
  25. Al-Ishaq R.K., Samuel S.M., Busselberg D. The influence of gut microbial species on diabetes mellitus. Int. J. Mol .Sci. 2023; 24(9): 8118. https://dx.doi.org/10.3390/ijms24098118.
  26. Kuo Y.W., Huang Y.Y., Tsai S.Y., Wang J.Y., Lin J.H., Syu Z.J. et al. Probiotic formula ameliorates renal dysfunction indicators, glycemic levels, and blood pressure in a diabetic nephropathy mouse model. Nutrients. 2023; 15(12): 2803. https://dx.doi.org/10.3390/nu15122803.
  27. Jiang T., Li Y., Li L., Liang T., Du M., Yang L. et al. Bifidobacterium longum 070103 fermented milk improve glucose and lipid metabolism disorders by regulating gut microbiota in mice. Nutrients. 2022; 14(19): 4050. https://dx.doi.org/10.3390/nu14194050.
  28. Ben Othman R., Ben Amor N., Mahjoub F., Berriche O., El Ghali C., Gamoudi A., Jamoussi H. A clinical trial about effects of prebiotic and probiotic supplementation on weight loss, psychological profile and metabolic parameters in obese subjects. Endocrinol. Diabetes Metab. 2023; 6(2): e402. https://dx.doi.org/ 10.1002/ edm2.402.
  29. Громова О.А., Торшин И.Ю., Тетруашвили Н.К., Галустян А.Н., Курицына Н.А. О перспективах использования комбинаций фолиевой кислоты и активных фолатов для нутрициальной поддержки беременности. Акушерство и гинекология. 2019; 4: 87-94. [Gromova O.A., Torshin I.Yu., Tetruashvili N.K., Galustyan A.N., Kuritsyna N.A. On prospects for using combinations of folic acid and active folates for the nutritional support of pregnancy. Obstetrics and Gynecology. 2019; (4): 87-94. (in Russian)]. https://dx.doi.org/10.18565/aig.2019.4.87-94.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1

Download (12KB)
3. Fig. 2

Download (27KB)
4. Fig. 3

Download (106KB)
5. Fig. 4

Download (105KB)
6. Fig. 5

Download (96KB)
7. Fig. 5 (cont.)

Download (77KB)

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies