Quantitative analysis of piwiRNAs in the culture medium of euploid and aneuploid blastocysts as an additional method of selecting a high-quality embryo for transfer to the uterine cavity in assisted reproductive technology programs

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective: To identify piwiRNAs in the culture medium of a blastocyst associated with cell ploidy and the implanting ability of an embryo after transfer into the uterine cavity.

Materials and methods: The study included 73 couples whose culture medium of 93 embryos was analyzed; among them there were 53 euploid blastocysts (according to the results of PGT-A) with implantation (27 embryos) and without implantation (26 embryos) after transfer of cryopreserved embryos into the uterine cavity in ART programs using cyclic hormone therapy; 40 blastocysts were aneuploid. piwiRNAs were isolated from 20 µl of the culture medium with the miRNeasy Serum/Plasma Kit (Qiagen) and analyzed using deep sequencing on the NextSeq 500/550 platform (Illumina, USA). The obtained data were subsequently validated by quantitative polymerase chain reaction in real time with the miScript II RT Kit and miScript SYBR Green PCR Kit (Qiagen, Hilden, Germany).

Results: Two logistic regression models were built after quantification of hsa_piR_020497 and hsa_piR_020829, or hsa_piR_016677 and hsa_piR_020829, which have 93% and 100% specificity, respectively, in identifying euploid blastocysts with high implantation potential. The miRanda algorithm was used to analyze potential target genes of piwiRNAs associated with aneuploidy, which are involved in the formation of the spindle apparatus, the development and functioning of kinetochore, and cytokinesis.

Conclusion: A noninvasive method of selecting euploid embryo with a high implantation potential for transfer into the uterine cavity in ART programs was developed. At this stage of the study, this method is additional but not alternative to the PGT-A method.

Full Text

Restricted Access

About the authors

Angelika V. Timofeeva

Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Author for correspondence.
Email: v_timofeeva@oparina4.ru

Ph.D. (Bio), Head of the Laboratory of Applied Transcriptomics

Russian Federation, 117997, Moscow, Academician Oparin str., 4

Ivan S. Fedorov

Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: is_fedorov@oparina4.ru

Researcher at the Laboratory of Applied Transcriptomics

Russian Federation, 117997, Moscow, Academician Oparin str., 4

Guzel V. Savostina

Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: savostina2324@gmail.com

postgraduate student

Russian Federation, 117997, Moscow, Academician Oparin str., 4

Alexey N. Ekimov

Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: a_ekimov@oparina4.ru

Ph.D., Head of the Laboratory of Preimplantation Genetic Screening

Russian Federation, 117997, Moscow, Academician Oparin str., 4

Svetlana G. Perminova

Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: s_perminova@oparina4.ru

Dr. Med. Sci., Leading Researcher at the Scientific and Clinical Department of ART named after F. Paulsen

Russian Federation, 117997, Moscow, Academician Oparin str., 4

References

  1. Lensen S., Lantsberg D., Gardner D.K., Sophian A.D., Wandafiana N., Kamath M.S. The role of timing in frozen embryo transfer. Fertil. Steril. 2022; 118(5):832-8. https://dx.doi.org/10.1016/j.fertnstert.2022.08.009.
  2. Governini L., Luongo F.P., Haxhiu A., Piomboni P., Luddi A. Main actors behind the endometrial receptivity and successful implantation. Tissue Cell. 2021; 73: 101656. https://dx.doi.org/10.1016/j.tice.2021.101656.
  3. Donaghay M., Lessey B.A. Uterine receptivity: alterations associated with benign gynecological disease. Semin. Reprod. Med. 2007; 25(6): 461-75. https://dx.doi.org/10.1055/s-2007-991044.
  4. Fesahat F., Montazeri F., Hoseini S.M. Preimplantation genetic testing in assisted reproduction technology. J. Gynecol. Obstet. Hum. Reprod. 2020; 49(5): 101723. https://dx.doi.org/10.1016/j.jogoh.2020.101723.
  5. Franasiak J.M., Forman E.J., Hong K.H., Werner M.D., Upham K.M., Treff N.R., Scott R.T.J. The nature of aneuploidy with increasing age of the female partner: a review of 15,169 consecutive trophectoderm biopsies evaluated with comprehensive chromosomal screening. Fertil. Steril. 2014; 101(3): 656-63.e1. https://dx.doi.org/10.1016/j.fertnstert.2013.11.004.
  6. Ubaldi F.M., Cimadomo D., Capalbo A., Vaiarelli, A., Buffo L., Trabucco E. et al. Preimplantation genetic diagnosis for aneuploidy testing in women older than 44 years: a multicenter experience. Fertil. Steril. 2017; 107(5): 1173-80. https://dx.doi.org/10.1016/j.fertnstert.2017.03.007.
  7. Fragouli E., Alfarawati S., Spath K., Wells D. Morphological and cytogenetic assessment of cleavage and blastocyst stage embryos. Mol. Hum. Reprod. 2014, 20(2): 117-26. https://dx.doi.org/10.1093/molehr/gat073.
  8. Minasi M.G., Fiorentino F., Ruberti A., Biricik A., Cursio E.,Cotroneo E. et al. Genetic diseases and aneuploidies can be detected with a single blastocyst biopsy: a successful clinical approach. Hum. Reprod. 2017; 32(8): 1770–77. https://dx.doi.org/10.1093/humrep/dex215.
  9. Teh W.T., McBain J., Rogers P. What is the contribution of embryo-endometrial asynchrony to implantation failure? J. Assist. Reprod. Genet. 2016; 33(11): 1419-30. https://dx.doi.org/10.1007/s10815-016-0773-6.
  10. Sato T., Sugiura-Ogasawara M., Ozawa F., Yamamoto T., Kato T., Kurahashi H. et al. Preimplantation genetic testing for aneuploidy: a comparison of live birth rates in patients with recurrent pregnancy loss due to embryonic aneuploidy or recurrent implantation failure. Hum. Reprod. 2020; 35(1): 255. https://dx.doi.org/10.1093/humrep/dez289.
  11. Greco E., Bono S., Ruberti A., Lobascio A.M., Greco P., Biricik A. et al. Comparative genomic hybridization selection of blastocysts for repeated implantation failure treatment: a pilot study. Biomed Res. Int. 2014; 2014: 457913. https://dx.doi.org/10.1155/2014/ 457913.
  12. Tong J., Niu Y., Wan A., Zhang T. Next-Generation Sequencing (NGS) based preimplantation genetic testing for aneuploidy (PGT-A) of trophectoderm biopsy for recurrent implantation failure (RIF) patients: a retrospective study. Reprod. Sci. 2021; 28(7): 1923-9. https://dx.doi.org/10.1007/ s43032-021-00519-0.
  13. Pantou A., Mitrakos A., Kokkali G., Petroutsou K., Tounta G., Lazaros L. et al. The impact of preimplantation genetic testing for aneuploidies (PGT-A) on clinical outcomes in high risk patients. J. Assist. Reprod. Genet. 2022; 39(6): 1341-9. https://dx.doi.org/10.1007/s10815-022-02461-9.
  14. Gleicher N., Patrizio P., Brivanlou A. Preimplantation genetic testing for aneuploidy - a castle built on sand. Trends Mol. Med. 2021; 27(8): 731-42. https://dx.doi.org/10.1016/j.molmed.2020.11.009.
  15. McIlwraith E.K., He W., Belsham D.D. Promise and perils of microRNA discovery research: Working towards quality over quantity. Endocrinology. 2023; 164(9): bqad111. https://dx.doi.org/10.1210/endocr/bqad111.
  16. Xiong Q., Zhang Y. Small RNA modifications: regulatory molecules and potential applications. J. Hematol. Oncol. 2023; 16(1): 64. https://dx.doi.org/10.1186/s13045-023-01466-w.
  17. Wang X., Ramat A., Simonelig M., Liu M.F. Emerging roles and functional mechanisms of PIWI-interacting RNAs. Nat. Rev. Mol. Cell Biol. 2023; 24(2): 123-41. https://dx.doi.org/10.1038/s41580-022-00528-0.
  18. Czech B., Munafò M., Ciabrelli F., Eastwood E.L., Fabry M.H., Kneuss E., Hannon G.J. piRNA-Guided genome defense: from biogenesis to silencing. Ann. Rev. Genet. 2018; 52: 131–57. https://dx.doi.org/10.1146/ annurev-genet-120417-031441.
  19. Tóth K.F., Pezic D., Stuwe E., Webster A. The piRNA pathway guards the germline genome against transposable elements. Adv. Exp. Med. Biol. 2016; 886: 51-7. https://dx.doi.org/10.1007/978-94-017-7417-8_4.
  20. Russell S.J., LaMarre J. Transposons and the PIWI pathway: genome defense in gametes and embryos. Reproduction 2018; 156(4): 111-24. https://dx.doi.org/0.1530/REP-18-0218.
  21. Rosenbluth E.M., Shelton D.N., Wells L.M., Sparks A.E.T., Van Voorhis B.J. Human embryos secrete microRNAs into culture media--a potential biomarker for implantation. Fertil. Steril. 2014; 101(5): 1493-500. https://dx.doi.org/10.1016/j.fertnstert.2014.01.058.
  22. Capalbo A., Ubaldi F.M., Cimadomo D., Noli L., Khalaf Y., Farcomeni A. et al. MicroRNAs in spent blastocyst culture medium are derived from trophectoderm cells and can be explored for human embryo reproductive competence assessment. Fertil. Steril. 2016; 105(1): 225-35. https://dx.doi.org/10.1016/ j.fertnstert.2015.09.014.
  23. Timofeeva A.V, Fedorov I.S., Shamina M.A., Chagovets V.V, Makarova N.P., Kalinina E.A. et al. Clinical relevance of secreted small noncoding RNAs in an embryo implantation potential prediction at morula and blastocyst development stages. Life (Basel, Switzerland). 2021; 11(12): 1328. https://dx.doi.org/10.3390/life11121328.
  24. Timofeeva A., Drapkina Y., Fedorov I., Chagovets V., Makarova N., ShaminaM. et al. Small noncoding RNA signatures for determining the developmental potential of an embryo at the morula stage. Int. J. Mol. Sci. 2020; 21(24): 9399. https://dx.doi.org/10.3390/ijms21249399.
  25. Langmead B., Trapnell C., Pop M., Salzberg S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009; 10(3): R25. https://dx.doi.org/10.1186/gb-2009-10-3-r25.
  26. Love M.I., Huber W. Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. 2014; 15(12): 550. https://dx.doi.org/10.1186/s13059-014-0550-8.
  27. Team R.C. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available online: https://www. r-project.org (accessed on Mar 10, 2021).
  28. Team Rs. RStudio: Integrated Development for R. RStudio Available online: http://www.rstudio.com/ (accessed on Mar 23, 2021).
  29. Martin R.H. Meiotic errors in human oogenesis and spermatogenesis. Reprod. Biomed. Online. 2008; 16(4): 523-31. https://dx.doi.org/10.1016/ s1472-6483(10)60459-2.
  30. Шамина М.А., Тимофеева А.В., Федоров И.С., Калинина Е.А. Оценка уровня экспрессии пивиРНК hsa_piR_020497 в фолликулярной жидкости пациенток с различными исходами программ экстракорпорального оплодотворения. Акушерство и гинекология 2021;11:143-53. [Shamina M.A., Timofeeva A.V., Fedorov I.S., Kalinina E.A. Assessment of the expression level of hsa_pir_020497 piRNA in the follicular fluid of patients with different in vitro fertilization outcomes. Obstetrics and Gynecology. 2021; (11): 134-53 (in Russian)]. https://dx.doi.org/10.18565/aig.2021.11.143-53.
  31. Krawetz S.A., Kruger A., Lalancette C., Tagett R., Anton E., Draghici S., Diamond M.P. A survey of small RNAs in human sperm. Hum. Reprod. 2011; 26(12):3401-12. https://dx.doi.org/10.1093/humrep/der329.
  32. Sun Y.H., Wang R.H., Du K., Zhu J., Zheng J., Xie L.H. et al. Coupled protein synthesis and ribosome-guided piRNA processing on mRNAs. Nat. Commun. 2021; 12(1): 5970. https://dx.doi.org/0.1038/s41467-021-26233-8.
  33. Gou L.T., Dai P., Yang J.H., Xue Y., Hu Y.P., Zhou Y. et al. Pachytene piRNAs instruct massive mRNA elimination during late spermiogenesis. Cell Res. 2015; 25(2):266. https://dx.doi.org/10.1038/cr.2015.14.
  34. Goh W.S., Falciatori I., Tam O.H., Burgess R., Meikar O., Kotaja N. et al. PiRNA-directed cleavage of meiotic transcripts regulates spermatogenesis. Genes Dev. 2015; 29(10): 1032-44. https://dx.doi.org/10.1101/gad.260455.115.
  35. Reuter M., Berninger P., Chuma S., Shah H., Hosokawa M., Funaya C. et al. Miwi catalysis is required for piRNA amplification-independent LINE1 transposon silencing. Nature. 2011; 480(7376):264-7.https://dx.doi.org/10.1038/nature10672.
  36. Dai P., Wang X., Gou L.T., Li Z.T., Wen Z., Chen Z.G. et al. A Translation-activating function of MIWI/piRNA during mouse spermiogenesis. Cell. 2019; 179(7): 1566-81.e16. https://dx.doi.org/10.1016/j.cell.2019.11.022.
  37. Zitouni S., Nabais C., Jana S.C., Guerrero A., Bettencourt-Dias M. Polo-like kinases: structural variations lead to multiple functions. Nat. Rev. Mol. Cell Biol. 2014; 15(7): 433-52. https://dx.doi.org/10.1038/nrm3819.
  38. Remo A., Li X., Schiebel E., Pancione M. The Centrosome linker and its role in cancer and genetic disorders. Trends Mol. Med. 2020; 26(4): 380-93. https://dx.doi.org/10.1016/j.molmed.2020.01.011.
  39. Li X., Shu K., Wang Z., Ding D. Prognostic significance of KIF2A and KIF20A expression in human cancer: a systematic review and meta-analysis. Medicine (Baltimore). 2019; 98(46): e18040. https://dx.doi.org/10.1097/MD.0000000000018040.
  40. Cunningham C.E., Li S., Vizeacoumar F.S., Bhanumathy K.K., Lee J.S., Parameswaran S. et al. Therapeutic relevance of the protein phosphatase 2A in cancer. Oncotarget. 2016; 7(38): 61544-61. https://dx.doi.org/10.18632/oncotarget.11399.
  41. Asai Y., Matsumura R., Hasumi Y., Susumu H., Nagata K., Watanabe Y., Terada Y. SET/TAF1 forms a distance-dependent feedback loop with aurora B and Bub1 as a tension sensor at centromeres. Sci. Rep. 2020; 10(1): 15653. https://dx.doi.org/10.1038/s41598-020-71955-2.
  42. Wigley W.C., Fabunmi R.P., Lee M.G., Marino C.R., Muallem S., DeMartino G.N., Thomas P.J. Dynamic аssociation of proteasomal machinery with the centrosome. J. Cell Biol. 1999; 145(3): 481-90. https://dx.doi.org/10.1083/jcb.145.3.481.
  43. Lilienbaum A. Relationship between the proteasomal system and autophagy. Int. J. Biochem. Mol. Biol. 2013; 4(1): 1-26.
  44. Gerhardt C., Lier J.M., Burmühl S., Struchtrup A., Deutschmann K., Vetter M. et al. The transition zone protein Rpgrip1l regulates proteasomal activity at the primary cilium. J. Cell Biol. 2015; 210(1): 115-33. https://dx.doi.org/10.1083/jcb.201408060.
  45. Holt J.E., Tran S.M.T., Stewart J.L., Minahan K.,García-Higuera I., Moreno S., Jones K.T. The APC/C activator FZR1 coordinates the timing of meiotic resumption during prophase I arrest in mammalian oocytes. Development. 2011;138(5): 905-13. https://dx.doi.org/10.1242/dev.059022.
  46. Rattani A., Ballesteros Mejia R., Roberts K., Roig M.B., Godwin J., Hopkins M. et al. APC/C(Cdh1) enables removal of shugoshin-2 from the arms of bivalent chromosomes by moderating cyclin-dependent kinase activity. Curr. Biol. 2017; 27(10):1462-76:e5. https://dx.doi.org/10.1016/j.cub.2017.04.023.
  47. Zhang X., Wang L., Ma Y., Wang Y., Liu H., Liu M. et al. CEP128 is involved in spermatogenesis in humans and mice. Nat. Commun. 2022; 13(1):1395. https://dx.doi.org/10.1038/s41467-022-29109-7.
  48. Pitaval A., Senger F., Letort G., Gidrol X., Guyon L., Sillibourne J., Théry M. Microtubule stabilization drives 3D centrosome migration to initiate primary ciliogenesis. J. Cell Biol. 2017; 216(11): 3713-28. https://dx.doi.org/10.1083/jcb.201610039.
  49. Yang Z., Gallicano G.I., Yu Q.C., Fuchs E. An unexpected localization of basonuclin in the centrosome, mitochondria, and acrosome of developing spermatids. J. Cell Biol. 1997;137(3):657-69. https://dx.doi.org/10.1083/jcb.137.3.657.
  50. Zhang X., Chou W., Haig-Ladewig L., Zeng W., Cao W., Gerton G. BNC1 is required for maintaining mouse spermatogenesis. Genesis. 2012;50(7):517-24. https://dx.doi.org/10.1002/dvg.22014.
  51. Ma J., Zeng F., Schultz R.M., Tseng H. Basonuclin: a novel mammalian maternal-effect gene. Development. 2006;133(10):2053-62. https://dx.doi.org/10.1242/dev.02371.
  52. Lim H.Y.G., Plachta N. Cytoskeletal control of early mammalian development. Nat. Rev. Mol. Cell Biol. 2021; 22(8): 548-62. https://dx.doi.org/10.1038/s41580-021-00363-9.
  53. Herreros L., Rodríguez-Fernandez J.L., Brown M.C., Alonso-Lebrero J.L., Cabañas C. et al. Paxillin localizes to the lymphocyte microtubule organizing center and associates with the microtubule cytoskeleton. J. Biol. Chem. 2000; 275(34): 26436-40. https://dx.doi.org/10.1074/jbc.M003970200.
  54. Ezoe K., Miki T., Ohata K., Fujiwara N., Yabuuchi A., Kobayashi T., Kato K. Prolactin receptor expression and its role in trophoblast outgrowth in human embryos. Reprod. Biomed. Online. 2021; 42(4): 699-707. https://dx.doi.org/10.1016/j.rbmo.2021.01.006.
  55. Takahashi S., Mui V.J., Rosenberg S.K.,Homma K., Cheatham M.A., Zheng J. Cadherin 23-C regulates microtubule networks by modifying CAMSAP3’s function. Sci. Rep. 2016; 6: 28706. https://dx.doi.org/10.1038/srep28706.
  56. Meng W., Mushika Y., Ichii T., Takeichi M. Anchorage of microtubule minus ends to adherens junctions regulates epithelial cell-cell contacts. Cell. 2008; 135(5): 948-59. https://dx.doi.org/10.1016/j.cell.2008.09.040.
  57. Shah J., Guerrera D., Vasileva E., Sluysmans S., Bertels E., Citi S. PLEKHA7: Cytoskeletal adaptor protein at center stage in junctional organization and signaling. Int. J. Biochem. Cell Biol. 2016; 75: 112-6. https://dx.doi.org/10.1016/j.biocel.2016.04.001.
  58. Mao B.P., Ge R., Cheng C.Y. Role of microtubule +TIPs and -TIPs in spermatogenesis - Insights from studies of toxicant models. Reprod. Toxicol. 2020; 91: 43-52. https://dx.doi.org/10.1016/j.reprotox.2019.11.006.
  59. Dubois F., Bergot E., Zalcman G., Levallet G. RASSF1A, puppeteer of cellular homeostasis, fights tumorigenesis, and metastasis-an updated review. Cell Death Dis. 2019; 10(12): 928. https://dx.doi.org/10.1038/ s41419-019-2169-x.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1.

Download (803KB)
3. Fig.2.

Download (487KB)
4. Fig.3.

Download (486KB)
5. Fig.4.

Download (407KB)

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies