Abnormalities of the fetal heart rhythm: fetal bradyarrhythmias

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

Fetal bradycardia refers to a sustained fetal heart rate less than 110 beats per minute for at least a 10-minute period. There can be different types of bradycardias: sinus, low atrial or nodal bradycardia, blocked atrial bigeminy or atrioventricular (AV) block.

AV block is the most common type of fetal bradycardia and occurs in 1 in 15,000–20,000 live births. There are 3 degrees of AV block: the first degree, the second-degree type 1 and type 2 and the third (full) degree.

Autoimmune congenital AV block is a passively acquired autoimmune disorder of the conduction system associated with the transplacental transition of maternal autoantibodies to the developing fetus. Clinical signs of fetal AV block of autoimmune origin most often appear in the period from the 18th to the 24th week gestation. First- or second-degree AV block has short reversibility windows, and early detection of this type of rhythm disorder is important for the treatment, since it is possible to stop pathological changes in the myocardium of the fetal heart at this stage of the process. Third-degree AV block is considered irreversible.

The probability of death in newborns with complete AV block ranges from 15 to 30%. The risk of intrauterine death is 6%, and the overall 10-year survival rate is 86%. Dilated cardiomyopathy develops in the neonatal period in 5–30% of cases, and most newborns require the implantation of a permanent artificial pacemaker.

Conclusion: Fetal arrhythmias can be diagnosed with high accuracy and can be managed therapeutically. The examination of all fetuses with an irregular rhythm or a heart rate that does not correspond to the gestational age is justified and may help identify the cause of the disease, affect treatment tactics and further prognosis. As a rule, severe cardiac arrhythmias in the fetus and early gestational period when arrhythmia develops lead to the severe course of the disease in the fetus, high probability of nonimmune fetal hydrops and antenatal fetal death.

Толық мәтін

Рұқсат жабық

Авторлар туралы

Natalia Yannaeva

Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Хат алмасуға жауапты Автор.
Email: yannaeva@yandex.ru

PhD, Researcher, ultrasound diagnostics doctor

Ресей, 117997, Moscow, Ac. Oparina str., 4

Ekaterina Bokeriya

Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: e-bockeria@mail.ru
ORCID iD: 0000-0002-8898-9612

Dr.Med. Sci., Professor, neonatologist, pediatric cardiologist, Leading Researcher

Ресей, 117997, Moscow, Ac. Oparina str., 4

Әдебиет тізімі

  1. AIUM practice guideline for the performance of fetal echocardiography. American Institute of Ultrasound in Medicine. J. Ultrasound Med. 2013; 32(6): 1067-82. https://dx.doi.org/10.7863/ultra.32.6.106.
  2. Jaeggi E.T., Friedberg M.K. Diagnosis and management of fetal bradyarrhythmias. Pacing Clin. Electrophysiol. 2008; 31(Suppl. 1): S50-3. https://dx.doi.org/10.1111/j.1540-8159.2008.00957.x.
  3. Bravo-Valenzuela N.J., Rocha L.A., Machado Nardozza L.M., Araujo Júnior E. Fetal cardiac arrhythmias: current evidence. Ann. Pediatr. Cardiol. 2018; 11(2): 148-63. https://dx.doi.org/10.4103/apc.APC_134_17.
  4. Cavoretto P.I., Seidenari A., Amodeo S., Della Gatta A.N., Nale R., Ismail Y.S. et al. Quantification of posterior risk related to intrapartum FIGO 2015 criteria for cardiotocography in the second stage of labor. Fetal Diagn. Ther. 2021; 48(2): 149-57. https://dx.doi.org/10.1159/000512658.
  5. Sylwestrzak O., Nowakowska A., Murlewska J., Respondek-Liberska M. Normal ranges of fetal heart rate values for healthy fetuses in Poland, as determined by ultrasound between weeks 18 and 29 of gestation. Kardiol. Pol. 2021; 79(11): 1245-50. https://dx.doi.org/10.33963/KP.a2021.0119.
  6. Jaeggi E.T., Nii M. Fetal brady-and tachyarrhythmias: new and accepted diagnostic and treatment methods. Semin. Fetal Neonatal Med. 2005; 504-14. https://dx.doi.org/10.1016/j.siny.2005.08.003.
  7. Wacker-Gussmann A., Strasburger J.F., Cuneo B.F., Wakai R.T. Diagnosis and treatment of fetal arrhythmia. Am. J. Perinatol. 2014; 31(7): 617-28. https://dx.doi.org/10.1055/s-0034-1372430.
  8. Lin M.T., Hsieh F.J., Shyu M.K., Lee C.N., Wang J.K., Wu M.H. Postnatal outcome of fetal bradycardia without significant cardiac abnormalities. Am. Heart J. 2004; 147(3): 540-4. https://dx.doi.org/1016/j.ahj.2003.09.016.
  9. Maeno Y., Rikitake N., Toyoda O., Kiyomatsu Y., Miyake T., Himeno W. et al. Prenatal diagnosis of sustained bradycardia with 1:1 atrioventricular conduction. Ultrasound Obstet. Gynecol. 2003; 21(3): 234-8. https://dx.doi.org/10.1002/uog.71.
  10. Donofrio M.T., Moon-Grady A.J., Hornberger L.K., Copel J.A., Sklansky M.S., Abuhamad A. et al. Diagnosis and treatment of fetal cardiac disease: a scientific statement from the American Heart Association. American Heart Association Adults With Congenital Heart Disease Joint Committee of the Council on Cardiovascular Disease in the Young and Council on Clinical Cardiology, Council on Cardiovascular Surgery and Anesthesia, and Council on Cardiovascular and Stroke Nursing.Circulation. 2014; 129(21): 2183-242. https://dx.doi.org/10.1161/01.cir.0000437597.44550.5d.
  11. Cuneo B.F., Ovadia M., Strasburger J.F., Zhao H., Petropulos T., Schneider J. et al. Prenatal diagnosis and in utero treatment of torsades de pointes associated with congenital long QT syndrome. Am. J. Cardiol. 2003; 91(11): 1395-8. https://dx.doi.org/10.1016/s0002-9149(03)00343-6.
  12. Collazos J.C., Acherman R.J., Law I.H., Wilkes P., Restrepo H., Evans W.N. Sustained fetal bradycardia with 1:1 atrioventricular conduction and long QT syndrome. Prenat. Diagn. 2007; 27(9): 879-81. https://dx.doi.org/10.1002/pd.1784.
  13. Bravo-Valenzuela N.J. Fetal bradycardia and sinus node dysfunction. Pediatr. Cardiol. 2013; 34(5): 1250-3. https://dx.doi.org/10.1007/s00246-012-0370-0.
  14. Chockalingam P., Jaeggi E.T., Rammeloo L.A., Haak M.C., Adama van Scheltema P.N., Breur J.M. et al. Persistent fetal sinus bradycardia associated with maternal anti-SSA/Ro and anti-SSB/La antibodies. J. Rheumatol. 2011; 38(12): 2682-5. https://dx.doi.org/10.3899/ jrheum.110720.
  15. Cuneo B.F., Buyon J.P. Keeping upbeat to prevent the heartbreak of anti-Ro/SSA pregnancy. Ultrasound Obstet. Gynecol. 2019; 54(1): 7-9. https://dx.doi.org/10.1002/uog.20361.
  16. Crotti L., Celano G., Dagradi F., Schwartz P.J. Congenital long QT syndrome. Orphanet J. Rare Dis. 2008; 7: 3-18. https://dx.doi.org/10.1186/1750-1172-3-18.
  17. Antzelevitch C. Androgens and male predominance of the Brugada syndrome phenotype. Pacing Clin. Electrophysiol. 2003; 26(7, Pt 1): 1429-31. https://dx.doi.org/10.1046/j.1460-9592.2003.t01-1-00206.x.
  18. Romano C., Gemme G., Pongiglione R. Rare cardiac arrythmias of the pediatric age. ll. Syncopal attacks due to paroxysmal ventricular fibrillation (presentation of 1st case in Italian pediatric literature). Clin. Pediatr. (Bologna). 1963; 45: 656-83.
  19. Jervell A., Lange-Nielsen F. Congenital deaf-mutism, functional heart disease with prolongation of the Q-T interval and sudden death. Am. Heart J. 1957; 54(1): 59-68. https://dx.doi.org/10.1016/0002-8703(57)90079-0.
  20. Mitchell J.L., Cuneo B.F., Etheridge S.P., Horigome H., Weng H.Y., Benson D.W. Fetal heart rate predictors of long QT syndrome. Circulation. 2012; 26(23). 2688-95. https://dx.doi.org/10.1161/CIRCULATIONAHA.112.114132.
  21. Wang D.W., Crotti L., Shimizu W., Pedrazzini M., Cantu F., De Filippo P. et al. Malignant perinatal variant of long-QT syndrome caused by a profoundly dysfunctional cardiac sodium channel. Circ. Arrhythm. Electrophysiol. 2008; 1(5): 370-8. https://dx.doi.org/0.1161/CIRCEP.108.788349.
  22. Simpson J.M., Maxwell D., Rosenthal E., Gill H. Fetal ventricular tachycardia secondary to long QT syndrome treated with maternal intravenous magnesium: case report and review of the literature. Ultrasound Obstet. Gynecol. 2009; 34(4): 475-80. https://dx.doi.org/10.1002/uog.6433.PMID: 19731233
  23. Murphy L.L., Moon-Grady A.J., Cuneo B.F., Wakai R.T., Yu S., Kunic J.D. et al. Developmentally regulated SCN5A splice variant potentiates dysfunction of a novel mutation associated with severe fetal arrhythmia. Heart Rhythm. 2012; 9(4): 590-7. https://dx.doi.org/10.1016/j.hrthm.2011.11.006.
  24. Giudicessi J.R., Ackerman M.J. Arrhythmia risk in long QT syndrome: beyond the disease-causative mutation. Circ. Cardiovasc. Genet. 2013; 6(4): 313-6. https://dx.doi.org/10.1161/CIRCGENETICS.113.000260.
  25. Cuneo B.F., Strasburger J.F., Yu S., Horigome H., Hosono T., Kandori A., Wakai R.T. In utero diagnosis of long QT syndrome by magnetocardiography. Circulation. 2013; 128(20): 2183-91. https://dx.doi.org/10.1161/CIRCULATIONAHA.113.004840.
  26. Clur S.B., Vink A.S., Etheridge S.P., Robles de Medina P.G., Rydberg A., Ackerman M.J. Left ventricular isovolumetric relaxation time is prolonged in fetal Long-QT syndrome. Circ. Arrhythm. Electrophysiol. 2018; 11(4): e005797. https://dx.doi.org/10.1161/CIRCEP.117.005797.
  27. Tomek V., Skovranek J., Gebauer R.A. Prenatal diagnosis and management of fetal Long QT syndrome. Pediatr. Cardiol. 2009; 30(2): 194-6. https://dx.doi.org/10.1007/s00246-008-9294-0.
  28. Arnestad M., Crotti L., Rognum T.O., Insolia R., Pedrazzini M., Ferrandi C. Prevalence of long-QT syndrome gene variants in sudden infant death syndrome. Circulation. 2007; 115(3): 361-7. https://dx.doi.org/10.1161/CIRCULATIONAHA.106.658021.
  29. Anastasakis A., Papatheodorou E., Ritsatos K., Protonotarios N., Rentoumi V., Gatzoulis K. Sudden unexplained death in the young: epidemiology, aetiology and value of the clinically guided genetic screening. Europace. 2018; 20(3): 472-80. https://dx.doi.org/10.1093/europace/ euw362.
  30. Greene E.A., Berul C.I., Donofrio M.T. Prenatal diagnosis of long QT syndrome: implications for delivery room and neonatal management. Cardiol. Young. 2013; 23(1): 1415. https://dx.doi.org/10.1017/S1047951112000583.
  31. Rosenthal E. Fetal heart block. In: Allan L., Hornberger L.K., Sharland G., eds. Textbook of fetal cardiology. London: Greenwich Medical Media; 2000: 438-52.
  32. Nii M., Hamilton R.M., Fenwick L., Kingdom J.C., Roman K.S., Jaeggi E.T. Assessment of fetal atrioventricular time intervals by tissue Doppler and pulse Doppler echocardiography: normal values and correlation with fetal electrocardiography. Heart. 2006; 92(12): 1831-7. https://dx.doi.org/10.1017/S1047951112000583.
  33. Pasquini L., Seale A.N., Belmar C., Oseku-Afful S., Thomas M.J., Taylor M.J. et al. PR interval: a comparison of electrical and mechanical methods in the fetus. Early Hum. Dev. 2007; 83(4): 231-7. https://dx.doi.org/10.1016/ j.earlhumdev.2006.05.020.
  34. Friedman D.M., Kim M.Y., Copel J.A., Davis C., Phoon C.K., Glickstein J.S. et al. Utility of cardiac monitoring in fetuses at risk for congenital heart block: the PR Interval and Dexamethasone Evaluation (PRIDE) prospective study. PRIDE Investigators. Circulation. 2008; 117(4): 485-93. https://dx.doi.org/10.1161/CIRCULATIONAHA.107.707661.
  35. Hunter L.E., Simpson J.M. Atrioventricular block during fetal life. J. Saudi Heart Assoc. 2015; 27(3): 164-78. https://dx.doi.org/10.1016/ j.jsha.2014.07.001.
  36. Sonesson S.E., Salomonsson S., Jacobsson L.A., Bremme K., Wahren-Herlenius M. Signs of first-degree heart block occur in one-third of fetuses of pregnant women with anti-SSA/Ro 52-kd antibodies. Arthritis Rheum. 2004; 50(4): 1253-61. https://dx.doi.org/10.1002/art.20126.
  37. Jaeggi E.T., Silverman E.D., Laskin C., Kingdom J., Golding F., Weber R.J. Prolongation of the atrioventricular conduction in fetuses exposed to maternal anti-Ro/SSA and anti-La/SSB antibodies did not predict progressive heart block. A prospective observational study on the effects of maternal antibodies on 165 fetuses. Am. Coll. Cardiol. 2011; 57(13): 1487-92. https://dx.doi.org/10.1016/j.jacc.2010.12.014.
  38. Brucato A., Jonzon A., Friedman D., Allan L.D., Vignati G., Gasparini M. Proposal for a new definition of congenital complete atrioventricular block. J. Lupus. 2003; 12(6): 427-35. https://dx.doi.org/10.1191/0961203303lu408oa.
  39. Popescu M.R., Dudu A., Jurcut C., Ciobanu A.M., Zagrean A.M., Panaitescu A.M. A broader perspective on anti-ro antibodies and their fetal consequences-A case report and literature review. Diagnostics (Basel). 2020; 10(7): 478. https://dx.doi.org/10.3390/diagnostics10070478.
  40. Llanos C., Friedman D.M., Saxena A., Izmirly P.M., Tseng C.E., Dische R. et al. Anatomical and pathological findings in hearts from fetuses and infants with cardiac manifestations of neonatal lupus. Rheumatology (Oxford). 2012; 51(6): 1086-92. https://dx.doi.org/10.1093/rheumatology/ker515.
  41. Brito-Zerón P., Izmirly P.M., Ramos-Casals M., Buyon J.P., Khamashta M.A. The clinical spectrum of autoimmune congenital heart block. Nat. Rev. Rheumatol. 2015; 11(5): 301-12. https://dx.doi.org/10.1038/nrrheum.2015.29.
  42. Baruteau A.E., Fouchard S., Behaghel A., Mabo P., Villain E., Thambo J.B. et al. Characteristics and long-term outcome of non-immune isolated atrioventricular block diagnosed in utero or early childhood: a multicentre study. Eur. Heart J. 2012; 33(5): 622-9. https://dx.doi.org/10.1093/eurheartj/ehr347.
  43. Izmirly P.M., Halushka M.K., Rosenberg A.Z., Whelton S., Rais-Bahrami K., Nath D.S. et al. Clinical and pathologic implications of extending the spectrum of maternal autoantibodies reactive with ribonucleoproteins associated with cutaneous and now cardiac neonatal lupus from SSA/Ro and SSB/La to U1RNP. Autoimmun. Rev. 2017; 16(9): 980-3. https://dx.doi.org/10.1016/ j.autrev.2017.07.013.
  44. Friedman D., Duncanson L.j., Glickstein J., Buyon J. A review of congenital heart block..Images Paediatr. Cardiol. 2003; 5(3): 36-48.
  45. Buyon J.P., Clancy R.M., Friedman D.M. Autoimmune associated congenital heart block: integration of clinical and research clues in the management of the maternal / fetal dyad at risk. J. Intern. Med. 2009; 265(6): 653-62. https://dx.doi.org/10.1111/j.1365-2796.2009.02100.x.
  46. Boutjdir M. Molecular and ionic basis of congenital complete heart block. Trends Cardiovasc. Med. 2000; 10(3): 114-22. https://dx.doi.org/10.1016/s1050-1738(00)00059-1.
  47. Wainwright B., Bhan R., Trad C., Cohen R., Saxena A., Buyon J. et al. Autoimmune-mediated congenital heart block. Best Pract. Res. Clin. Obstet. Gynaecol. 2020; 64: 41-51. https://dx.doi.org/10.1016/j.bpobgyn.2019.09.001.
  48. Sonesson S.E., Eliasson H., Conner P., Wahren-Herlenius M. Doppler echocardiographic isovolumetric time intervals in diagnosis of fetal blocked atrial bigeminy and 2:1 atrioventricular block. Ultrasound Obstet. Gynecol. 2014; 44(2): 171-5. https://dx.doi.org/10.1002/uog.13344.
  49. Jaeggi E.T., Fouron J.C., Silverman E.D., Ryan G., Smallhorn J., Hornberger L.K. Transplacental fetal treatment improves the outcome of prenatally diagnosed complete atrioventricular block without structural heart disease. Circulation. 2004; 110(12): 1542-8. https://dx.doi.org/10.1161/ 01.CIR.0000142046.58632.3A.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig.1.

Жүктеу (13KB)
3. Fig.2.

Жүктеу (30KB)
4. Fig.3.

Жүктеу (29KB)
5. Fig.3.

Жүктеу (31KB)
6. Fig.5.

Жүктеу (15KB)
7. Fig.6.

Жүктеу (12KB)

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>