Tissue-selective estrogen regulation capabilities in postmenopausal women

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Postmenopause is a physiological period in a woman’s life characterized by a decrease in levels of sex steroid hormones. Estrogen deficiency is associated with the development of vasomotor symptoms, genitourinary syndrome of menopause (GSM), skin and breast tissue changes, lipid and carbohydrate disorders, endothelial dysfunction, and increased cardiometabolic risks, as well as decreased bone mineral density. To date, the most effective method for correcting various symptoms of menopause is menopausal hormone therapy; one of its options that can be used in postmenopause is considered to be tibolone, a tissue–selective regulator of estrogenic activity.

The review presents the history of studying the molecule of tibolone, which is a synthetic steroid with estrogenic, progestogenic, and androgenic activity. The mechanism of action of tibolone involves the formation of three active metabolites: 3-β-hydroxytibolone and 3-α-hydroxytibolone, which are responsible for estrogenic effects of tibolone and mainly present in an inactive sulfated form, and Δ4-tibolone, which has progestogenic and androgenic activity. Tibolone use in postmenopausal women has demonstrated effective alleviation of vasomotor symptoms, GSM, increase in bone mineral density, and positive effects on the cardiovascular and central nervous systems; stimulating effect on the endometrium was absent. There is also a discussion of mechanism of tibolone impact on breast tissue. Thus, tibolone exhibits selective estrogenic activity and regulates actions in different tissues, making it a unique representative of the STEAR class.

Conclusion: Tibolone is the first representative of tissue selective regulators of estrogenic activity. The diverse hormonal effects of tibolone are due to the action of several key metabolites on various tissues. Tibolone can currently be considered as an effective therapy for many postmenopausal women. It is necessary to take into account a number of characteristics of tibolone action and determine the possibility of prescribing the therapy for a specific patient on the basis of this information.

Full Text

Restricted Access

About the authors

Maria I. Yarmolinskaya

D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology; I.I. Mechnikov North-Western State Medical University, Ministry of Health of Russia

Author for correspondence.
Email: m.yarmolinskaya@gmail.com
SPIN-code: 3686-3605
Scopus Author ID: 7801562649
ResearcherId: P-2183-2014

Dr. Med. Sci., Professor of the Russian Academy of Sciences, Head of the Department of Gynecology and Endocrinology, Head of the Center of Diagnostics and Treatment of Endometriosis, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology; Professor, Department of Obstetrics and Gynecology, I.I. Mechnikov North-Western State Medical University, Ministry of Health of Russia

Russian Federation, St. Petersburg; St. Petersburg

Anastasiya V. Koloshkina

D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology

Email: nastyasalukhova@gmail.com
ORCID iD: 0000-0002-5200-7672

Resident

Russian Federation, St. Petersburg

References

  1. Министерство здравоохранения Российской Федерации. Клинические рекомендации. Менопауза и климактерическое состояние у женщины. 2021. [Ministry of Health of the Russian Federation. Clinical guidelines. Menopause and climacteric state in women. 2021. (in Russian)].
  2. Sarri G., Pedder H., Dias S., Guo Y., Lumsden M.A. Vasomotor symptoms resulting from natural menopause: a systematic review and network meta-analysis of treatment effects from the National Institute for Health and Care Excellence guideline on menopause. BJOG. 2017; 124(10): 1514-23. https://dx.doi.org/10.1111/1471-0528.14619.
  3. Ярмолинская М.И., Татарова Н.А., Касян В.Н., Петросян А.С. Эффективность негормональной терапии в лечении женщин с климактерическим синдромом. Российский вестник акушера-гинеколога. 2021; 21(2): 91-101. [Yarmolinskaya M.I., Tatarova N.A., Kasyan V.N., Petrosyan A.S. Efficacy of non-hormonal therapy for menopausal syndrome treatment. Russian Bulletin of Obstetrician-Gynecologist. 2021; 21(2): 91-101. (in Russian)]. https://dx.doi.org/10.17116/rosakush20212102191.
  4. Figueroa-Vega N., Moreno-Frías C., Malacara J.M. Alterations in adhesion molecules, pro-inflammatory cytokines and cell-derived microparticles contribute to intima-media thickness and symptoms in postmenopausal women. PLoS One. 2015; 10(5): e0120990. https://dx.doi.org/10.1371/journal.pone.0120990.
  5. Woollard K.J. Immunological aspects of atherosclerosis. Clin. Sci. (Lond). 2013; 125(5): 221-35. https://dx.doi.org/10.1042/CS20120576.
  6. Vara D., Pula G. Reactive oxygen species: physiological roles in the regulation of vascular cells. Curr. Mol. Med. 2014; 14(9): 1103-25. https://dx.doi.org/10.2174/1566524014666140603114010.
  7. Szmuilowicz E.D., Manson J.E., Rossouw J.E., Howard B.V., Margolis K.L., Greep N.C. et al. Vasomotor symptoms and cardiovascular events in postmenopausal women. Menopause. 2011; 18(6): 603-10. https://dx.doi.org/10.1097/gme.0b013e3182014849.
  8. Novella S., Heras M., Hermenegildo C., Dantas A.P. Effects of estrogen on vascular inflammation: a matter of timing. Arterioscler. Thromb. Vasc. Biol. 2012; 32: 2035-42. https://dx.doi.org/10.1161/ATVBAHA.112.250308.
  9. Yasui T., Uemura H., Tomita J., Miyatani Y., Yamada M., Kuwahara A. et al. Association of interleukin-8 with hot flashes in premenopausal, perimenopausal, and postmenopausal women and bilateral oophorectomized. J. Clin. Endocrinol. Metab. 2006; 91: 4805-8. https://dx.doi.org/10.1210/jc.2006-1100.
  10. Santoro N., Epperson C.N., Mathews S.B. Menopausal symptoms and their management. Endocrinol. Metab. Clin. North Am. 2015; 44(3): 497-515. https://dx.doi.org/10.1016/j.ecl.2015.05.001.
  11. Trémollieres F. Assessment and hormonal management of osteoporosis. Climacteric. 2019; 22(2): 122-6. https://dx.doi.org/10.1080/13697137.2018. 1555582.
  12. Шляхто Е.В., Сухих Г.Т., Серов В.Н., Дедов И.И., Арутюнов Г.П., Сучков И.А. и др. Российские критерии приемлемости назначения менопаузальной гормональной терапии пациенткам с сердечно-сосудистыми и метаболическими заболеваниями. Согласительный документ РКО, РОАГ, РАЭ, ЕАТ, РАФ. Проблемы эндокринологии. 2023; 69(5): 115-36. [Shlyakhto E.V., Sukhikh G.T., Serov V.N., Dedov I.I., Arutyunov G.P., Suchkov I.A. et al. Russian eligibility criteria prescribing menopausal hormonal hormones therapy for patients with cardiovascular and metabolic diseases. Consensus document of the Russian Cardiological Society, Russian Society of Obstetricians and Gynecologists, Russian Association of Endocrinologists, Eurasian Association of Therapists, Association of Phlebologists of Russia. Problems of Endocrinology. 2023; 69(5):115-36. (in Russian)]. https://dx.doi.org/10.14341/probl13394.
  13. Gass M.L.S., Maki P., Shifren J.L., Schnatz P.F., Kaunitz A.M., Shapiro M. et al. NAMS supports judicious use of systemic hormone therapy for women aged 65 years and older. Menopause. 2015; 22(7): 685-6. https://dx.doi.org/10.1097/GME.0000000000000491.
  14. Lv C., Zhang W., Tan X., Shang X., Găman M.A., Salem H. et al. The effect of tibolone treatment on lipid profile in women: A systematic review and dose-response meta-analysis of randomized controlled trials. Pharmacol. Res. 2021; 169: 105612. https://dx.doi.org/10.1016/j.phrs.2021.105612.
  15. Kenemans P., Speroff L.; International Tibolone Consensus Group. Tibolone: clinical recommendations and practical guidelines. A report of the International Tibolone Consensus Group. Maturitas. 2005; 51(1): 21-8. https://dx.doi.org/10.1016/j.maturitas.2005.02.011.
  16. Del Río J.P., Molina S., Hidalgo-Lanussa O., Garcia-Segura L.M., Barreto G.E. Tibolone as hormonal therapy and neuroprotective agent. Trends Endocrinol. Metab. 2020; 31(10): 742-59. https://dx.doi.org/10.1016/j.tem.2020.04.007.
  17. Kloosterboer H.J. Tissue-selectivity: the mechanism of action of tibolone. Maturitas. 2004; 48 (Suppl. 1): S30-40. https://dx.doi.org/10.1016/j.maturitas.2004.02.012.
  18. Kloosterboer H.J. Historical milestones in the development of tibolone (Livial®). Climacteric. 2011; 14(6): 609-21. https://dx.doi.org/10.3109/13697137.2011.580639.
  19. Van Vliet N.P., Broess A.I.A., Peters J.A.M., van den Broek J.A.J., Leemhuis J.A.J., Zeelen F.J. An alternative synthesis of 17β-hydroxy-7α-methyl-19-nor-17α-pregn-5(10)-en-20-yn-3-one (Org OD14). Recl. Trav. Chim. Pays-Bas. 1986; 105(4): 111-5. https://dx.doi.org/10.1002/recl.19861050403.
  20. de Gooyer M.E., Deckers G.H. Schoonen W.G., Verheul H.A., Kloosterboer H.J. Receptor profiling and endocrine interactions of tibolone. Steroids. 2003; 68(1): 21-30. https://dx.doi.org/10.1016/s0039-128x(02)00112-5.
  21. Jelinek J., Kappen A., Schönbaum E., Lomax P. A primate model of human postmenopausal hot flushes. J. Clin. Endocrinol. Metab. 1984; 59(6):1224-8. https://dx.doi.org/10.1210/jcem-59-6-1224.
  22. Genazzani A.R., Petraglia F., Facchinetti F., Genazzani A.D., Bergamaschi M., Grasso A. et al. Effects of Org OD 14 on pituitary and peripheral beta-endorphin in castrated rats and post-menopausal women. Maturitas. 1987; Suppl 1: 35-48. https://dx.doi.org/10.1016/0378-5122(87)90041-7.
  23. Markiewicz L., Gurpide E. In vitro evaluation of estrogenic, estrogen antagonistic and progestagenic effects of a steroidal drug (Org OD-14) and its metabolites on human endometrium. J. Steroid Biochem. 1990; 35(5): 535-41. https://dx.doi.org/0.1016/0022-4731(90)90196-y.
  24. Tang B., Markiewicz L., Kloosterboer H.J., Gurpide E. Human endometrial 3 beta-hydroxysteroid dehydrogenase/isomerase can locally reduce intrinsic estrogenic/progestagenic activity ratios of a steroidal drug (Org OD 14). J. Steroid Biochem. Mol. Biol. 1993; 45(5): 345-51. https://dx.doi.org/10.1016/0960-0760(93)90003-f.
  25. Hanifi-Moghaddam P., Boers-Sijmons B., Klaassens A.H., van Wijk F.H., den Bakker M.A., Ott M.C. et al. Molecular analysis of human endometrium: short-term tibolone signaling differs significantly from estrogen and estrogen + progestagen signaling. J. Mol. Med. (Berl). 2007; 85(5): 471-80. https://dx.doi.org/10.1007/s00109-006-0146-1.
  26. Archer D.F., Hendrix S., Gallagher J.C., Rymer J., Skouby S., Ferenczy A. Endometrial effects of tibolone. Clin. Endocrinol. Metab. 2007; 92(3): 911-8. https://dx.doi.org/10.1210/jc.2006-2207.
  27. Reis B.F., Lima S.M., Silva G.M., Francisco A.M., Barbosa L.C., Archangelo S.C. et al. Effects of low dose of tibolone on steroid receptors and Bcl-2 on the postmenopausal endometrium. Histol. Histopathol. 2016; 31(6): 629-34. https://dx.doi.org/10.14670/HH-11-706.
  28. Huber J., Palacios S., Berglund L., Hänggi W., Sathanandan S.M., Christau S. et al. Effects of tibolone and continuous combined hormone replacement therapy on bleeding rates, quality of life and tolerability in postmenopausal women. BJOG. 2002; 109(8): 886-93. https://dx.doi.org/10.1111/j.1471-0528.2002.01338.x.
  29. Völker W., Coelingh Bennink H.J., Helmond F.A. Effects of tibolone on the endometrium. Climacteric. 2001; 4(3): 203-8.
  30. McCluggage W.G. Morphological subtypes of ovarian carcinoma: a review with emphasis on new developments and pathogenesis. Pathology. 2011; 43(5): 420-32. https://dx.doi.org/10.1097/PAT.0b013e328348a6e7.
  31. de Vries C.S., Bromley S.E., Thomas H., Farmer R.D. Tibolone and endometrial cancer: a cohort and nested case-control study in the UK. Drug Saf. 2005; 28(3): 241-9. https://dx.doi.org/10.2165/00002018-200528030-00005.
  32. Klaassens A.H., van Wijk F.H., Hanifi-Moghaddam P., Sijmons B., Ewing P.C., Ten Kate-Booij M.J. et al. Histological and immunohistochemical evaluation of postmenopausal endometrium after 3 weeks of treatment with tibolone, estrogen only, or estrogen plus progestagen. Fertil. Steril. 2006; 86(2): 352-61. https://dx.doi.org/10.1016/j.fertnstert.2005.12.077.
  33. Vos R.M., Krebbers S.F., Verhoeven C.H., Delbressine L.P. The in vivo human metabolism of tibolone. Eur. Drug Metab. Dispos. 2002; 30(2): 106-12. https://dx.doi.org/10.1124/dmd.30.2.106.
  34. Gompel A., Chaouat M., Jacob D., Perrot J.Y., Kloosterboer H.J., Rostene W. In vitro studies of tibolone in breast cells. Fertil. Steril. 2002; 78(2): 351-9. https://dx.doi.org/10.1016/s0015-0282(02)03203-x.
  35. Conner P., Christow A., Kersemaekers W., Söderqvist G., Skoog L., Carlström K. et al. A comparative study of breast cell proliferation during hormone replacement therapy: effects of tibolon and continuous combined estrogen-progestogen treatment. Climacteric. 2004; 7(1): 50-8. https:// dx.doi.org/10.1080/13697130310001651472.
  36. Lundström E., Christow A., Kersemaekers W., Svane G., Azavedo E., Söderqvist G. et al. Effects of tibolone and continuous combined hormone replacement therapy on mammographic breast density. Obstet. Gynecol. 2002; 186(4): 717-22. https://dx.doi.org/10.1067/mob.2002.121896.
  37. Erel C.T., Senturk L.M., Kaleli S. Tibolone and breast cancer. Postgrad. Med. J. 2006; 82(972): 658-62. https://dx.doi.org/10.1136/pgmj.2005.037184.
  38. Pasqualini J.R., Kloosterboer H.J. Estrone sulfatase and 17β-hydroxysteroid dehydrogenase activities in human breast cancer. Inhibitory effect by tibolone and its metabolites. Acta Obstet. Gynaecol. Scand. 1997; 76(167): 35.
  39. DIPART (Vitamin D Individual Patient Analysis of Randomized Trials) Group. Patient level pooled analysis of 68 500 patients from seven major vitamin D fracture trials in US and Europe. BMJ. 2010; 340: b5463. https://dx.doi.org/10.1136/bmj.b5463.
  40. Higgins J.P., Jackson D., Barrett J.K., Lu G., Ades A.E., White I.R. Consistency and inconsistency in network meta-analysis: concepts and models for multi-arm studies. Res. Synth. Methods. 2012; 3(2): 98-110. https://dx.doi.org/10.1002/jrsm.1044.
  41. Lee J.K., Yun H., Kim H., Yun B.H., Seo S.K. Tibolone and breast cancer. Menopausal Med. 2023; 29(3): 92-6. https://dx.doi.org/10.6118/jmm.23032.
  42. Kenemans P., Speroff L.; International Tibolone Consensus Group. Tibolone: clinical recommendations and practical guidelines. A report of the Int. Tibolone Consensus Group. Maturitas. 2005; 51(1): 21-8. https://dx.doi.org/10.1016/j.maturitas.2005.02.011.
  43. Lello S., Capozzi A., Scambia G., Franceschini G. Tibolone and breast tissue: a review. Reprod. Sci. 2023; 30(12): 3403-9. https://dx.doi.org/10.1007/s43032-023-01295-9.
  44. Cummings S.R., Ettinger B., Delmas P.D., Kenemans P., Stathopoulos V., Verweij P. et al. The effects of tibolone in older postmenopausal women. N. Engl. J. Med. 2008; 14; 359(7): 697-708. https://dx.doi.org/10.1056/NEJMoa0800743.
  45. Sismondi P., Kimmig R., Kubista E., Biglia N., Egberts J., Mulder R. et al. Effects of tibolone on climacteric symptoms and quality of life in breast cancer patients-data from LIBERATE trial. Maturitas. 2011; 70(4): 365-72. https://dx.doi.org/10.1016/j.maturitas.2011.09.003.
  46. Formoso G., Perrone E., Maltoni S., Balduzzi S., Wilkinson J., Basevi V. et al. Short-term and long-term effects of tibolone in postmenopausal women. Cochrane Database Syst. Rev. 2016; 10(10): CD008536. https://dx.doi.org/10.1002/14651858.CD008536.pub3.
  47. Landgren M.B., Bennink H.J., Helmond F.A., Engelen S. Dose-response analysis of effects of tibolone on climacteric symptoms. BJOG. 2002; 109(10): 1109-14. https://dx.doi.org/10.1111/j.1471-0528.2002.02020.x.
  48. Barrionuevo P., Kapoor E., Asi N., Alahdab F., Mohammed K., Benkhadra K. et al. Efficacy of pharmacological therapies for the prevention of fractures in postmenopausal women: A Network meta-analysis. Clin. Endocrinol. Metab. 2019; 104(5): 1623-30. https://dx.doi.org/10.1210/jc.2019-00192.
  49. Anagnostis P., Galanis P., Chatzistergiou V., Stevenson J.C., Godsland I.F., Lambrinoudaki I. et al. The effect of hormone replacement therapy and tibolone on lipoprotein (a) concentrations in postmenopausal women: A systematic review and meta-analysis. Maturitas. 2017; 99(2): 27-36. https://dx.doi.org/10.1016/j.maturitas.2017.02.009.
  50. Casanova G., dos Reis A.M., Spritzer P.M. Low-dose oral or nonoral hormone therapy: effects on C-reactive protein and atrial natriuretic peptide in menopause. Climacteric. 2015; 18(1): 86-93. https://dx.doi.org/10.3109/13697137.2014.940309.
  51. Lee J., Kim Y., Park H., Kim C., Cho S., Kim J. Clinical impact of hormone replacement therapy on atrial fibrillation in postmenopausal women: A nationwide cohort study. Clin Med. 2021; 10(23): 5497. https://dx.doi.org/10.3390/jcm10235497.
  52. Vinogradova Y., Coupland C., Hippisley-Cox J. Use of hormone replacement therapy and risk of venous thromboembolism: nested case-control studies using the QResearch and CPRD databases. BMJ. 2019; 2015(8): k4810. https://dx.doi.org/10.1136/bmj.k4810.
  53. Gupta B., Mittal P., Khuteta R., Bhargava A. A comparative study of CEE, Tibolone, and DHEA as hormone replacement therapy for surgical menopause. J. Obstet. Gynaecol. India. 2013; 63(3): 194-8. https://dx.doi.org/10.1007/s13224-012-0297-7.
  54. Gordon J., Peltier A., Grummisch J.A., Sykes Tottenham L. Estradiol fluctuation, sensitivity to stress, and depressive symptoms in the menopause transition: a pilot study. Front. Psychol. 2019; 10: 1319. https://dx.doi.org/10.3389/fpsyg.2019.01319.
  55. Fluck E., File S.E., Rymer J. Cognitive effects of 10 years of hormone-replacement therapy with tibolone. J. Clin. Psychopharmacol. 2002; 22(1): 62-7. https://dx.doi.org/10.1097/00004714-200202000-00010.
  56. Berlanga C., Mendieta D., Alva G., del Carmen Lara M. Failure of tibolone to potentiate the pharmacological effect of fluoxetine in postmenopausal major depression. Womens Health (Larchmt). 2003; 12(1): 33-9. https://dx.doi.org/10.1089/154099903321154121.
  57. Kulkarni J., Gavrilidis E., Thomas N., Hudaib A.R., Worsley R., Thew C. et al. Tibolone improves depression in women through the menopause transition: A double-blind randomized controlled trial of adjunctive tibolone. Affect. Disord. 2018; 236: 88-92. https://dx.doi.org/10.1016/j.jad.2018.04.103.
  58. Pinto-Almazán R., Segura-Uribe J.J., Farfán-García E.D., Guerra-Araiza C. Effects of tibolone on the central nervous system: clinical and experimental approaches. Biomed. Res. Int. 2017; 2017: 8630764. https://dx.doi.org/10.1155/2017/8630764.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Relative concentrations of tibolone metabolites in different tissues (adapted from [16])

Download (440KB)
3. Fig. 2. Possible mechanisms of modulation of tissue selectivity of tibolone in mammary gland and endometrium (adapted from [18])

Download (300KB)
4. Fig 3. Effect of tibolone on estrogen metabolism in breast tissue (adapted from [41])

Download (178KB)

Copyright (c) 2024 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies