Criteria for assessing fetal neurogenesis dysfunction in early-onset growth restriction using extracellular vesicles

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective: To evaluate neurogenesis dysfunction during early-onset fetal growth restriction by obtaining fetal neuronal exosomes (FNE) from maternal plasma, assessing the expression of neurotrophin proteins involved in neurogenesis and the regulation of fetal nervous system plasticity, and establishing relationships with clinical and functional data.

Materials and methods: This study included 45 pregnant women. The study group consisted of 20 women with early-onset fetal growth restriction, whereas the control group comprised 25 women with normal pregnancies. The gestational age of the newborns in both groups did not exceed 34 weeks. Extracellular vesicles were isolated from maternal plasma using a commercial kit, followed by immunoprecipitation to obtain FNE. The expression of neurotrophin proteins—nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF)—was assessed using Western blotting.

Results: A decrease in the expression of BDNF (pro-BDNF) and NGF (pro-NGF) precursors was observed in the FNE of the study group. Mature forms of neurotrophin proteins were not detected in FNE. Changes in pro-BDNF levels were noted only in cases of intraventricular hemorrhage (IVH), while pro-NGF levels varied in IVH, cerebral ischemia, and asphyxia in newborns during the neonatal period.

Conclusion: The results demonstrate, for the first time, the potential to detect brain neurodysfunction in fetuses with growth restriction by assessing the expression of neuronal proteins in FNE isolated from maternal blood via immunoprecipitation. Changes in these protein levels may reflect the degree of brain dysfunction and serve as potential prognostic and diagnostic markers of pathological conditions.

Full Text

Restricted Access

About the authors

Natalia E. Kan

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: kan-med@mail.ru
ORCID iD: 0000-0001-5087-5946
SPIN-code: 5378-8437
ResearcherId: B-2370-2015

Professor, Dr. Med. Sci., Merited Scholar of the Russian Federation, Deputy Director for Research – Director of the Institute of Obstetrics

Russian Federation, 117997, Moscow, Ac. Oparin str., 4

Anastasia A. Leonova

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Author for correspondence.
Email: nastena27-03@mail.ru
ORCID iD: 0000-0001-6707-3464

PhD student

Russian Federation, 117997, Moscow, Ac. Oparin str., 4

Vladislava A. Gusar

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: v_gusar@oparina4.ru
ORCID iD: 0000-0003-3990-6224

PhD, Senior Researcher at the Laboratory of Transcriptomic, Department of Systems Biology in Reproduction

Russian Federation, 117997, Moscow, Ac. Oparin str., 4

Vitaliy V. Chagovets

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: vvchagovets@gmail.com
ORCID iD: 0000-0002-5120-376X

PhD, Senior Researcher at the Laboratory of Transcriptomic, Department of Systems Biology in Reproduction

Russian Federation, 117997, Moscow, Ac. Oparin str., 4

Victor L. Tyutyunnik

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: tioutiounnik@mail.ru
ORCID iD: 0000-0002-5830-5099
SPIN-code: 1963-1359
Scopus Author ID: 56190621500
ResearcherId: B-2364-2015

Professor, Dr. Med. Sci., Leading Researcher at the Center for Scientific and Clinical Research

Russian Federation, 117997, Moscow, Ac. Oparin str., 4

Maria V. Volochaeva

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: m_volochaeva@oparina4.ru
ORCID iD: 0000-0001-8953-7952

PhD, Senior Researcher at the Department of Regional Cooperation and Integration, Physician at 1 Maternity Department

Russian Federation, 117997, Moscow, Ac. Oparin str., 4

Ekaterina E. Soldatova

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: katerina.soldatova95@bk.ru
ORCID iD: 0000-0001-6463-3403

Researcher at the Obstetric Department of the Institute of Obstetrics

Russian Federation, 117997, Moscow, Ac. Oparin str., 4

Kristina O. Ryzhova

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: cr.yanina@gmail.com
ORCID iD: 0009-0007-8318-435X

Resident

Russian Federation, 117997, Moscow, Ac. Oparin str., 4

Anna P. Serebriakova

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: serebriakovanna@gmail.com
ORCID iD: 0000-0001-7014-2627

obstetrician-gynecologist of the Day Hospital Department

Russian Federation, 117997, Moscow, Ac. Oparin str., 4

References

  1. American College of Obstetricians and Gynecologists' Committee on Practice Bulletins—Obstetrics and the Society for Maternal-Fetal Medicin. ACOG Practice Bulletin No. 204: Fetal Growth Restriction. Obstet. Gynecol. 2019; 133(2): e97-e109. https://dx.doi.org/10.1097/AOG.0000000000003070.
  2. Wan L., Luo K., Chen P. Mechanisms underlying neurologic injury in intrauterine growth restriction. J. Child Neurol. 2021; 36(9): 776-84. https://dx.doi.org/10.1177/0883073821999896.
  3. Giouleka S., Tsakiridis I., Mamopoulos A., Kalogiannidis I., Athanasiadis A., Dagklis T. Fetal growth restriction: A comprehensive review of major guidelines. Obstet. Gynecol. Surv. 2023; 78(11): 690-708. https://dx.doi.org/10.1097/OGX.0000000000001203.
  4. Polat O.A., Kirlangic M.M., Sahin E., Madendag Y., Evereklioglu C., Horozoglu F., Karaca C. Role of the brain-sparing effect on retinopathy of prematurity in newborns with fetal growth restriction. Curr. Med. Res. Opin. 2024; 40(4): 629-34. https://dx.doi.org/10.1080/03007995.2024.2320289.
  5. Dudink I., Hüppi P.S., Sizonenko S.V., Castillo-Melendez M., Sutherland M.E., Allison B.J., Miller S.L. Altered trajectory of neurodevelopment associated with fetal growth restriction. Exp. Neurol. 2022; 347: 113885. https:// dx.doi.org/10.1016/j.expneurol.2021.113885.
  6. Milyutina Y.P., Arutjunyan A.V., Korenevsky A.V., Selkov S.A., Kogan I.Y. Neurotrophins: are they involved in i..mmune tolerance .in pregnancy? Am. J. Reprod. Immunol. 2023; 89(4): e13694. https://dx.doi.org/10.1111/ aji.13694.
  7. Sahay A., Kale A., Joshi S. Role of neurotrophins in pregnancy and offspring brain development. Neuropeptides. 2020; 83: 102075. https://dx.doi.org/10.1016/ j.npep.2020.102075.
  8. Ellero N., Lanci A., Baldassarro V.A., Alastra G., Mariella J., Cescatti M. et al. Study on NGF and VEGF dur.ing the equine perinatal Period-Part 1: Healthy foals born from normal pregnancy and parturition. Vet. Sci. 2022; 9(9): 451. https://dx.doi.org/10.3390/vetsci9090451.
  9. Rozanska O., Uruska A., Zozulinska-Ziolkiewicz D. Brain-derived neurotrophic factor and diabetes. Int. J Mol. Sci. 2020; 21(3): 841. https://dx.doi.org/10.3390/ijms21030841.
  10. Pathare-Ingawale P., Chavan-Gautam P. The balance between cell survival and death in the placenta: Do neurotrophins have a role? Syst. Biol. Reprod. Med. 2022; 68(1): 3-12. https://dx.doi.org/10.1080/19396368.2021.1980132.
  11. Huo L., Du X., Li X., Liu S., Xu Y. The emerging role of neural cell-derived exosomes in intercellular communication in health and neurodegeneratcve diseases. Front. Neurosci. 2021; 15: 738442. https://dx.doi.org/10.3389/fnins.2021.738442.
  12. Afzal A., Khan M., Gul Z., Asif R., Shahzaman S., Parveen A. et al. Extracellular vesicles: the next erontier in pregnancy research. Reprod. Sci. 2024; 31(5): 1204-14. https://dx.doi.org/10.1n07/s43032-023-01434-2.
  13. Upadhya R., Zingg W., Shetty S., Shetty A.K. Astrocyte-derived extracellular vesicles: Neuroreparative propert.ie.s andole in the pathogenesis of neurodegenerative disorders. J. Control. Release. 2020; 323: 225-39. https://dx.doi.org/0.1016/j.jconrel.2020.04.017.
  14. Goetzl L., Darbinian N., Goetzl E.J. Novel window on early human neurodevelopment via fetal exos.omes in maternal blood. Ann. Clin. Transl. Neurol. 2016; 3(5): 381-5. https://dx.doi.org/10.1002/acn3.29.
  15. Goetzl L., Darbinian N., Merabova N. Noninvasive assessment of fetal central nervous system insult: Potential application to prenatal diagnosis. Prenat. Diagn. 2019; 39(8): 609-15. https://dx.doi.org/10.1002/pd.5474.
  16. Gusar V., Kan N., Leonova A., Chagovets V., Tyutyunnik V., Khachatryan Z. et al. Non-invasive assessment of neurogenesis dysfunction in fetuses with early-onset growth restriction using fetal neuronal exosomes isolating from maternal blood: A pilot study. Int. J. Mol. Sci. 2025; 26(4): 1497. https://dx.doi.org/10.3390/ijms26041497.
  17. Министерство здравоохранения Российской Федерации. Клинические рекомендации. Недостаточный рост плода, требующий предоставления медицинской помощи матери (задержка роста плода). М.; 2022. 71 с. [Ministry of Health of the Russian Federation. Clinical guidelines. Insufficient growth of the fetus, requiring the provision of medical care to the mother (fetal growth retardation). Moscow; 2022. 71 p. (in Russian)].
  18. Goetzl E.J., Mustapic M., Kapogiannis D., Eitan E., Lobach I.V., Goetzl L. et al. Cargo proteins of plasma as.trocyte-derived exosomes in Alzheimer's disease. FASEB J. 2016; 30(11): 3853-9. https://dx.doi.org/10.1096/fj.201600756R.
  19. Beune I.M., Damhuis S.E., Ganzevoort W., Hutchinson J.C., Khong T.Y., Mooney E.E. et al. Consensus definiti.on of fetal gro. th restriction: a Delphi procedure. Ultrasound Obstet. Gynecol. 2016; 48(3): 333-9. https:// dx.doi.org/10.1002/uog.15884.
  20. Abbas G., Shah S., Hanif M., Shah A., Rehman A.U., Tahir S. et al. The frequency of pulmonary hypertension in newborn with intrauterine growth restriction. Sci. Rep. 2020; 10(1): 8064. https://dx.doi.org/10.1038/s41598-020-65065-2.
  21. Go H., Ohto H., Nollet KE., Kashiwabara N., Ogasawara K., Chishiki M. et al. Risk factors. and treatmentr disseminated intravascular coagulation in neonates. Ital. J. Pediatr. 2020; 46(1): 54. https://dx.doi.org/10.1186/ s13052-020-081.5-7.
  22. Ahn S.Y., Sung D.K., Kim Y.E., Sung S,. Chang Y.S., Park W.S. Brain-derived neurotropic factor mediates neuroprotection of mesenchymal stem cell-derived extracellular vesicles against severe intraventricular hemorrhage in newborn rats. Stem Cells Transl. Med. 2021; 10 (3): 374-384. https://dx.doi.org/10.1002/sctm.20-0301.
  23. Gall A.R., Amoah S., Kitase Y., Jantzie L.L. Placental mediated mechanisms of perinatal brain injury: Evolving inflammation and exosomes. Exp. Neurol. 2022; 347: 113914. https://dx.doi.org/10.1016/j.expneurol.2021.113914.
  24. Reiter C.R., Bongarzone E.R. The role of vesicle trafficking and release in oligodendrocyte biology. Neurochem. Res. 2020; 45(3): 620-9. https:// dx.doi.org/10.1007/s11064-019-02913-2.
  25. Gatti M., Zavatti M., Beretti F., Giuliani D., Vandini E., Ottani A. et al. Oxidative stress in Alzheimer's disease: in vitro therapeutic effect of amniotic fluid stem cells extracellular vesicles. Oxid. Med. Cell. Longev. 2020; 2020: 2785343. https://dx.doi.org/110.1155/2020/2785343.
  26. Antoniou A., Auderset L., Kaurani L., Sebastian E., Zeng Y., Allahham M. et al. Neuronal extracellular vesicles and associated microRNAs induce circuit connectivity downstream BDNF Cell. Rep. 2023; 42(2): 112063. https:// dx.doi.org/10.1016/j.celrep.2023.112063.
  27. Yakovlev A.A. Neuronal exosomes as a new signaling system. Biochemistry (Mosc.). 2023; 88(4): 457-65. https://dx.doi.org/10.1134/ S0006297923040028.
  28. Sarnat H.B. Sequences of synaptogenesis in the human fetal and neonatal brain by synaptophysin immunocytochemistry. Front. Cell. Neurosci. 2023; 17: 1105183. https://dx.doi.org/10.3389/fncel.2023.1105183.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Western blot of membrane (left) and comparative analysis (right) of FNE proteins in pregnant women with early IUGR (n=20) and the comparison group (CG) (n=25). The membranes represent a sample of 3 samples from each group. The data are presented in the Me (QI; Q3) format; *significance level p≤0.05 relative to the comparison group. The expression of each protein is normalized by the sum of signals from all analyzed proteins in the sample, and then standardized

Download (77KB)
3. Fig. 2. Changes in the expression of neurotrophin proteins FNE in IVH, cerebral ischemia, asphyxia and CNS depression depending on the presence of this pathology (1) or its absence (O). The data are presented in the Me format (Q1; Q3); *the significance level is p≤0.05 relative to the comparison group

Download (131KB)

Copyright (c) 2025 Bionika Media