Sperm selection in assisted reproductive technology programs using active microfluidic methods based on positive rheotaxis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Over the past 50 years, there has been a global decline in the quality of human sperm. Reports suggest that approximately 10-15% of couples worldwide experience difficulties in conceiving, and impaired spermatogenesis is responsible for 30-50% of these cases. The selection of high-quality motile spermatozoa from semen samples is an important step that largely determines the effectiveness of assisted reproductive technologies (ART). A lot of information has been collected in recent years about how sperm move through the female reproductive tract. Microfluidics-based devices make it possible to perform a more appropriate selection of spermatozoa in terms of motility, viability, DNA integrity and morphology, as they provide the opportunity to mimic the natural conditions and obstacles acting on spermatozoa in the natural environment of the female body. Due to the modelling and control of the conditions affecting the semen sample, these devices are able to select spermatozoa with the highest potential for successful fertilization.

This review provides new scientific evidence on the use of the ability of sperm to move against the fluid current during the embryological phase of fertility treatment programs using ART. Novel devices (lab-on-a-chip) that can be successfully integrated into the clinical practice of selecting male gametes by a clinical embryologist are also described. The review includes the data of foreign and Russian articles found in PubMed and e-Library systems published over the last 10 years.

Conclusion: Active microfluidics is a promising area of research for developing sperm selection methods that could improve the effectiveness of assisted reproduction procedures and result in better clinical outcomes.

Full Text

Restricted Access

About the authors

Natalya P. Makarova

Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Author for correspondence.
Email: np_makarova@oparina4.ru
ORCID iD: 0000-0003-1396-7272

Dr. Bio. Sci., Leading Researcher at the Department of IVF named after Prof. B.V. Leonov

Russian Federation, 117997, Moscow, Ac. Oparin str., 4

Alina Yu. Kapitannikova

Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: a_kapitannikova@oparina4.ru
ORCID iD: 0000-0002-0765-773X

Junior Researcher at the Biophotonics Laboratory

Russian Federation, 117997, Moscow, Ac. Oparin str., 4

Anastasia P. Sysoeva

Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: sysoeva.a.p@gmail.com
ORCID iD: 0000-0002-6502-4498

Clinical Embryologist, Department of IVF named after Prof. B.V. Leonov

Russian Federation, 117997, Moscow, Ac. Oparin str., 4

Vasiliy S. Chernyshev

Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: v_chernyshev@oparina4.ru
ORCID iD: 0000-0003-2372-7037

PhD, Head of the Biophotonics Laboratory

Russian Federation, 117997, Moscow, Ac. Oparin str., 4

Elena A. Kalinina

Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: e_kalinina@oparina4.ru
ORCID iD: 0000-0002-8922-2878

Dr. Med. Sci., Professor, Head of the Department of IVF named after Prof. B.V. Leonov

Russian Federation, 117997, Moscow, Ac. Oparin str., 4

Gennady T. Sukhikh

Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: g_sukhikh@oparina4.ru
ORCID iD: 0000-0002-7712-1260

Academician of the RAS, Dr. Med. Sci., Professor, Director

Russian Federation, 117997, Moscow, Ac. Oparin str., 4

References

  1. Ivkosic I.E., Mesic J., Fures R., Hrgovic Z., Bulic L., Brenner E. et al. Infertility - a great challenge of the past, present, and future. Mater. Sociomed. 2025; 37(1): 74-9. https://dx.doi.org/10.5455/msm.2025.37.74-79
  2. Agarwal A., Baskaran S., Parekh N., Cho C.L., Henkel R., Vij S. et al. Male infertility. Lancet. 2021; 397(10271): 319-33. https://dx.doi.org/10.1016/S0140-6736(20)32667-2
  3. Назаренко Т.А., ред. Бесплодный брак: клинические задачи и их решение. М.: МЕДпресс-информ; 2024. 127 с. [Nazarenko T.A., ed. Infertile marriage: clinical problems and their solution. Moscow: MEDpress-inform; 2024. 127 p. (in Russian)].
  4. Tiptiri-Kourpeti A., Asimakopoulos B., Nikolettos N. A narrative review on the sperm selection methods in assisted reproductive technology: out with the new, the old is better? J. Clin. Med. 2025; 14(4): 1066. https://dx.doi.org/10.3390/jcm14041066
  5. Agarwal A., Cho C.L., Majzoub A., Esteves S.C. The Society for Translational Medicine: clinical practice guidelines for sperm DNA fragmentation testing in male infertility. Transl. Androl. Urol. 2017; 6(Suppl. 4): S720-S733. https://dx.doi.org/10.21037/tau.2017.08.06
  6. Дети из чипа: инновационная технология отбора качественных сперматозоидов. Инновационная фармакотерапия. 2024; 1(19): 44-8. [Children from the chip: an innovative technology for selecting high-quality sperm. Innovative pharmacotherapy. 2024; 1(19): 44-8. (in Russian)].
  7. Беляева Л.А., Шурыгина О.В., Тугушев М.Т., Миронов С.Ю. Опыт применения микрожидкостных чипов для сортировки спермы у пациентов с лечением бесплодия. Ульяновский медико-биологический журнал. 2024; 1: 82-90. [Belyaeva L.A., Shurygina O.V., Tugushev M.T., Mironov S.Yu. Using microfluidic sperm sorting chips in patients with infertility. Ul'yanovskiy mediko-biologicheskiy zhurnal. 2024; (1): 82-90. (in Russian)]. https://dx.doi.org/10.34014/2227-1848-2024-1-82-90
  8. Meseguer F., Giménez Rodríguez C., Rivera Egea R., Carrión Sisternas L., Remohí J.A., Meseguer M. Can microfluidics improve sperm quality? A prospective functional study. Biomedicines. 2024; 12(5): 1131. https://dx.doi.org/10.3390/biomedicines12051131
  9. Макарова Н.П., Сысоева А.П., Чернышев В.С., Гаврилов М.Ю., Лобанова Н.Н., Кулакова Е.В., Калинина Е.А. Клиническая и биологическая эффективность использования микрожидкостных чипов для селекции сперматозоидов при лечении бесплодия методами вспомогательных репродуктивных технологий. Акушерство и гинекология. 2024; 11: 138-45. [Makarova N.P., Sysoeva A.P., Chernyshev V.S., Gavrilov M.Yu., Lobanova N.N., Kulakova E.V., Kalinina E.A. Clinical and biological efficacy of microfluidic chips for sperm selection in infertility treatment using assisted reproductive technologies. Obstetrics and Gynecology. 2024; (11): 138-45 (in Russian)]. https://dx.doi.org/10.18565/aig.2024.172
  10. Jahangiri A.R., Ziarati N., Dadkhah E., Bucak M.N., Rahimizadeh P., Shahverdi A. et al. Microfluidics: The future of sperm selection in assisted reproduction. Andrology. 2024; 12(6): 1236-52. https://dx.doi.org/10.1111/andr.13578
  11. Колесов Д.В., Вишнякова П.А., Макарова Н.П., Московцев А.А., Чернышев В.С. Микрофлюидика для вспомогательных репродуктивных технологий. От рождения до активного долголетия: Сборник тезисов докладов II Международного форума геномных и биомедицинских технологий. Сургут: Издательский центр СурГУ; 2024: 9-10. [Kolesov D.V., Vishnyakova P.A., Makarova N.P., Moskovtsev A.A., Chernyshev V.S. Microfluidics for assisted reproductive technologies. From birth to active longevity: Collection of abstracts of reports of the II International Forum of Genomic and Biomedical Technologies. Surgut: Publishing Center of SurSU; 2024: 9-10. (in Russian)].
  12. Патент на полезную модель № 230440U1 Российская Федерация, МПК C12N 5/076, G01N 33/487. Устройство для селекции мужских половых клеток с повышенной оплодотворяющей способностью для использования на эмбриологическом этапе программ лечения бесплодия методами вспомогательных репродуктивных технологий (POSHspermWash). Макарова Н.П., Чернышев В.С., Колесов Д.В., Сухих Г.Т. № 2024120398; заявл. 19.07.2024; опубл. 03.12.2024. [RU230440U1 Russian Federation, IPC C12N 5/076, G01N 33/487. Device for selection of male germ cells with increased fertilization capacity for use at the embryological stage of infertility treatment programs using assisted reproductive technologies (POSHspermWash). Makarova N.P., Chernyshev V.S., Kolesov D.V., Sukhikh G.T. No. 2024120398; appl. 19.07.2024; publ. 03.12.2024. (in Russian)].
  13. Zhou L., Liu H., Liu S., Yang X., Dong Y., Pan Y. et al. Structures of sperm flagellar doublet microtubules expand the genetic spectrum of male infertility. Cell. 2023; 186(13): 2897-2910.e19. https://dx.doi.org/10.1016/j.cell.2023.05.009
  14. Kumar N., Singh A.K. The anatomy, movement, and functions of human sperm tail: an evolving mystery. Biol. Reprod. 2021; 104(3): 508-20. https://dx.doi.org/10.1093/biolre/ioaa213
  15. Tamburrino L., Marchiani S., Muratori M., Luconi M., Baldi E. Progesterone, spermatozoa and reproduction: An updated review. Mol. Cell. Endocrinol. 2020; 516: 110952. https://dx.doi.org/10.1016/j.mce.2020.110952
  16. Mahé C., Zlotkowska A.M., Reynaud K., Tsikis G., Mermillod P., Druart X. et al. Sperm migration, selection, survival, and fertilizing ability in the mammalian oviduct. Biol. Reprod. 2021; 105(2): 317-31. https://dx.doi.org/10.1093/biolre/ioab105
  17. Hirashima T., W P S., Noda T. Collective sperm movement in mammalian reproductive tracts. Semin. Cell Dev. Biol. 2025; 166: 13-21. https://dx.doi.org/10.1016/j.semcdb.2024.12.002
  18. Roldan E.R.S., Teves M.E. Understanding sperm physiology: Proximate and evolutionary explanations of sperm diversity. Mol. Cell. Endocrinol. 2020; 518: 110980. https://dx.doi.org/10.1016/j.mce.2020.110980
  19. Sheibak N., Zandieh Z., Amjadi F., Aflatoonian R. How sperm protects itself: A journey in the female reproductive system. J. Reprod. Immunol. 2024; 163: 104222. https://dx.doi.org/10.1016/j.jri.2024.104222
  20. Cui Z., Wang Y., den Toonder J.M.J. Metachronal motion of biological and artificial cilia. Biomimetics (Basel). 2024; 9(4): 198. https://dx.doi.org/10.3390/biomimetics9040198
  21. Lindemann C.B., Lesich K.A. The many modes of flagellar and ciliary beating: Insights from a physical analysis. Cytoskeleton (Hoboken). 2021; 78(2): 36-51. https://dx.doi.org/10.1002/cm.21656
  22. Raidt J., Werner C., Menchen T., Dougherty G.W., Olbrich H., Loges N.T. et al. Ciliary function and motor protein composition of human fallopian tubes. Hum. Reprod. 2015; 30(12): 2871-80. https://dx.doi.org/10.1093/ humrep/dev227
  23. Suarez S.S. Mammalian sperm interactions with the female reproductive tract. Cell Tissue Res. 2016; 363(1): 185-94. https://dx.doi.org/10.1007/ s00441-015-2244-2
  24. Tung C.K., Ardon F., Roy A., Koch D.L., Suarez S.S., Wu M. Emergence of upstream swimming via a hydrodynamic transition. Phys. Rev. Lett. 2015; 114(10): 108102. https://dx.doi.org/10.1103/PhysRevLett.114.108102
  25. Hyakutake T., Higashiyama D., Tsuchiya T. Prediction of sperm motion behavior in microfluidic channel using sperm swimming model. J. Biomech. 2024; 176: 112336. https://dx.doi.org/10.1016/j.jbiomech.2024.112336
  26. Shiba K. Regulatory mechanisms for sperm chemotaxis and flagellar motility. Genesis. 2023; 61(6): e23549. https://dx.doi.org/10.1002/dvg.23549
  27. Zhang Z., Liu J., Meriano J., Ru C., Xie S., Luo J. et al. Human sperm rheotaxis: a passive physical process. Sci. Rep. 2016; 6: 23553. https://dx.doi.org/10.1038/srep23553
  28. Bukatin A., Kukhtevich I., Stoop N., Dunkel J., Kantsler V. Bimodal rheotactic behavior reflects flagellar beat asymmetry in human sperm cells. Proc. Natl. Acad. Sci. U. S. A. 2015; 112(52): 15904-9. https://dx.doi.org/10.1073/pnas.1515159112
  29. Bukatin A., Denissenko P., Kantsler V. Self-organization and multi-line transport of human spermatozoa in rectangular microchannels due to cell-cell interactions. Sci. Rep. 2020; 10(1): 9830. https://dx.doi.org/10.1038/s41598-020-66803-2
  30. Romero-Aguirregomezcorta J., Sugrue E., Martínez-Fresneda L., Newport D., Fair S. Hyperactivated stallion spermatozoa fail to exhibit a rheotaxis-like behaviour, unlike other species. Sci. Rep. 2018; 8(1): 16897. https://dx.doi.org/10.1038/s41598-018-34973-9
  31. Chinnasamy T., Kingsley J.L., Inci F., Turek P.J., Rosen M.P., Behr B. et al. Guidance and self-sorting of active swimmers: 3D periodic arrays increase persistence length of human sperm selecting for the fittest. Adv. Sci. (Weinh). 2018; 5(2): 1700531. https://dx.doi.org/10.1002/advs.201700531
  32. Dai P., Chen C., Yu J., Ma C., Zhang X. New insights into sperm physiology regulation: Enlightenment from G-protein-coupled receptors. Andrology. 2024; 12(6): 1253-71. https://dx.doi.org/10.1111/andr.13593
  33. Elango K., Kekäläinen J. Putting nose into reproduction: influence of nasal and reproductive odourant signaling on male reproduction. Mol. Reprod. Dev. 2025; 92(1): e70010. https://dx.doi.org/10.1002/mrd.70010
  34. Jikeli J.F., Alvarez L., Friedrich B.M., Wilson L.G., Pascal R., Colin R. et al. Sperm navigation along helical paths in 3D chemoattractant landscapes. Nat. Commun. 2015; 6: 7985. https://dx.doi.org/10.1038/ncomms8985
  35. Yoshida M., Yoshida K. Activation of motility and chemotaxis in the spermatozoa. Reprod. Med. Biol. 2025; 24(1): e12638. https://dx.doi.org/10.1002/rmb2.12638
  36. Pérez-Cerezales S., Laguna-Barraza R., de Castro A.C., Sánchez-Calabuig M.J., Cano-Oliva E., de Castro-Pita F.J. et al. Sperm selection by thermotaxis improves ICSI outcome in mice. Sci. Rep. 2018; 8(1): 2902. https://dx.doi.org/10.1038/s41598-018-21335-8
  37. Shirota K., Yotsumoto F., Itoh H., Obama H., Hidaka N., Nakajima K. et al. Separation efficiency of a microfluidic sperm sorter to minimize sperm DNA damage. Fertil. Steril. 2016; 105(2): 315-21.e1. https://dx.doi.org/10.1016/j.fertnstert.2015.10.023
  38. Huang C.H., Chen C.H., Huang T.K., Lu F., Jen Huang J.Y., Li B.R. Design of a gradient-rheotaxis microfluidic chip for sorting of high-quality sperm with progressive motility. iScience. 2023; 26(8): 107356. https://dx.doi.org/10.1016/j.isci.2023.107356
  39. Danis R.B., Samplaski M.K. Sperm morphology: history, challenges, and impact on natural and assisted fertility. Curr. Urol. Rep. 2019; 20(8): 43. https://dx.doi.org/10.1007/s11934-019-0911-7
  40. El-Sherry T.M., Abdel-Ghani M.A., Abdel Hafez H.K., Abdelgawad M. Rheotaxis of sperm in fertile and infertile men. Syst. Biol. Reprod. Med. 2023; 69(1): 57-63. https://dx.doi.org/10.1080/19396368.2022.2141154
  41. Yaghoobi M., Azizi M., Mokhtare A., Javi F., Abbaspourrad A. Rheotaxis quality index: a new parameter that reveals male mammalian in vivo fertility and low sperm DNA fragmentation. Lab. Chip. 2022; 22(8): 1486-97. https://dx.doi.org/10.1039/d2lc00150k
  42. Romero-Aguirregomezcorta J., Laguna-Barraza R., Fernández-González R., Štiavnická M., Ward F., Cloherty J. et al. Sperm selection by rheotaxis improves sperm quality and early embryo development. Reproduction. 2021; 161(3): 343-52. https://dx.doi.org/10.1530/REP-20-0364
  43. Yaghoobi M., Abdelhady A., Favakeh A., Xie P., Cheung S., Mokhtare A. et al. Faster sperm selected by rheotaxis leads to superior early embryonic development in vitro. Lab. Chip. 2024; 24(2): 210-23. https://dx.doi.org/10.1039/d3lc00737e
  44. Faisal R.M., Ayeleru O.O., Modekwe H.U., Ramatsa I.M. Bibliometric study of plastics microfluidic chip from 1994 to 2022: A review. Heliyon. 2025; 11(2): e42102. https://dx.doi.org/10.1016/j.heliyon.2025.e42102
  45. Zaferani M., Cheong S.H., Abbaspourrad A. Rheotaxis-based separation of sperm with progressive motility using a microfluidic corral system. Proc. Natl. Acad. Sci. U. S. A. 2018; 115(33): 8272-7. https://dx.doi.org/10.1073/pnas.1800819115
  46. Sarbandi I.R., Lesani A., Moghimi Zand M., Nosrati R. Rheotaxis-based sperm separation using a biomimicry microfluidic device. Sci. Rep. 2021; 11: 18327. https://doi.org/10.1038/s41598-021-97602-y
  47. Heidarnejad A., Sadeghi M., Arasteh S., Ghiass M.A. A novel microfluidic device for human sperm separation based on rheotaxis. Zygote. 2025; 33(1): 23-31. https://dx.doi.org/10.1017/S0967199424000467
  48. Banti M., Van Zyl E., Kafetzis D. Sperm preparation with microfluidic sperm sorting chip may improve intracytoplasmic sperm injection outcomes compared to density gradient centrifugation. Reprod. Sci. 2024; 31(6): 1695-704. https://dx.doi.org/10.1007/s43032-024-01483-1
  49. Ahmadkhani N., Saadatmand M., Kazemnejad S., Abdekhodaie M. Qualified sperm selection based on the rheotaxis and thigmotaxis in a microfluidic system. Biomed. Eng. Lett. 2023; 13: 671-80. https://dx.doi.org/10.1007/s13534-023-00294-8
  50. Heydari A., Zabetian Targhi M., Halvaei I., Nosrati R. A novel microfluidic device with parallel channels for sperm separation using spermatozoa intrinsic behaviors. Sci. Rep. 2023; 13: 1185. https://dx.doi.org/10.1038/s41598-023-28315-7
  51. Bouloorchi Tabalvandani M., Javadizadeh S., Badieirostami M. Bio-inspired progressive motile sperm separation using joint rheotaxis and boundary-following behavior. Lab. Chip. 2024; 24(6): 1636-47. https://dx.doi.org/10.1039/d3lc00893b

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic representation of the zones of action of the mechanisms of sperm movement along the genital tract (prepared by the authors)

Download (247KB)
3. Fig. 2. Schematic representation of the device [46]. The arrow indicates the rheotaxis zone.

Download (107KB)
4. Fig. 3. Gravity-controlled flow device [38]. The numbers indicate: 1) inlet for buffer supply; 2) opening for collecting the fraction of motile spermatozoa; 3) opening for introducing a sperm sample; 4) opening for collecting waste.

Download (112KB)
5. Fig. 4. Schematic representation of the device proposed by Heidarnejad A. et al. [47]. The numbers indicate: 1) the zone of sample introduction into the system; 2) rheotaxis zones; 3) sample collection zone.

Download (217KB)
6. Fig. 5. Schematic representation of the microchannel in the device of Ahmadkhani N. et al. [49]. The numbers indicate: 1) the inlet; 2) the collection zone of spermatozoa with positive rheotaxis; 3) the buffer input zone; 4) the connection zone.

Download (123KB)
7. Fig. 6. Schematic representation of the microfluidic device proposed by Heydari A. et al. [50]

Download (170KB)
8. Fig. 7. Schematic representation of the device [51]. A) sperm accumulation zone; B) sperm sorting zone

Download (261KB)

Copyright (c) 2025 Bionika Media