Comparative analysis of the accuracy of ultrasonography and magnetic resonance imaging in estimating fetal weight
- Authors: Syrkashev E.M.1, Nikolaeva A.V.1, Stoliarova E.V.1, Kholin A.M.1, Gorina K.A.1, Kesova M.I.1, Baev O.R.1,2, Kan N.E.1, Gus A.I.1,3
-
Affiliations:
- Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russia
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University), Moscow, Russia
- Patrice Lumumba Peoples' Friendship University of Russia
- Issue: No 9 (2025)
- Pages: 82-88
- Section: Original Articles
- URL: https://journals.eco-vector.com/0300-9092/article/view/691932
- DOI: https://doi.org/10.18565/aig.2025.152
- ID: 691932
Cite item
Abstract
Objective: To compare the accuracy of ultrasonography (USG) and magnetic resonance imaging (MRI) in determining estimated fetal weight (EFW).
Materials and methods: This prospective study included 103 pregnant women who underwent both MRI and USG before delivery. The EFW based on MRI data was calculated using the formula by Baker et al., while the EFW based on USG data was calculated using the Hadlock et al. formula. The EFW values were assessed using absolute measurements and on a percentile scale (INTERGROWTH-21st).
Results: The correlation coefficient between EFW based on USG data and the newborn's birth weight was 0.831 (p<0.001), while for MRI, it was 0.941 (p<0.001). The mean absolute error (MAE) of EFW in absolute values for USG was 145.68 (427.42) g, and for MRI, it was 117.83 (221.98) g, on a percentile scale, the MAE for USG was 4.17 (15.68), for MRI, it was 3.16 (7.03). The correlation coefficient between EFW above the 90th percentile was 0.374 (p=0.041) for USG and 0.855 (p<0.001) for MRI. The MAE for determining EFW (>90th percentile) was 173.93 (432.16) g for USG and 122.0 (202.82) g for MRI. On a percentile scale, the MAE was 0.38 (6.07) for USG and 0.76 (2.56) for the MRI. The area under the curve (ROC AUC) for identifying cases with birth weights > 4000 g was 0.916 (95% CI: 0.860–0.973) for USG and 0.986 (95% CI: 0.967–1.000) for MRI.
Conclusion: EFW determination based on MRI data is more accurate than that based on USG data, with the most significant differences noted in cases of fetal macrosomia. Developing machine learning algorithms is essential to reduce the time required for segmenting areas of interest, thereby enhancing the role of artificial intelligence in automating the EFW determination processes. Further research is necessary to establish the optimal timing and indications for using MRI as an additional method for determining the EFW.
Keywords
Full Text

About the authors
Egor M. Syrkashev
Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russia
Author for correspondence.
Email: e_syrkashev@oparina4.ru
ORCID iD: 0000-0003-4043-907X
PhD, Senior Researcher at the Radiology Department
Russian Federation, 117997, Moscow, Ac. Oparin str., 4Anastasia V. Nikolaeva
Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russia
Email: a_nikolaeva@oparina4.ru
ORCID iD: 0000-0002-0012-6688
PhD, Chief Physician
Russian Federation, 117997, Moscow, Ac. Oparin str., 4Elizaveta V. Stoliarova
Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russia
Email: ev_stolyarova@oparina4.ru
ORCID iD: 0009-0001-2049-3119
PhD student, 1st Obstetric Department of Pregnancy Pathology
Russian Federation, 117997, Moscow, Ac. Oparin str., 4Alexey M. Kholin
Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russia
Email: a_kholin@oparina4.ru
ORCID iD: 0000-0002-4068-9805
PhD, Head of the Department of Telemedicine
Russian Federation, 117997, Moscow, Ac. Oparin str., 4Ksenia A. Gorina
Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russia
Email: k_gorina@oparina4.ru
ORCID iD: 0000-0001-6266-2067
PhD, Junior Researcher at the 1 Department of Obstetric Pathology of Pregnancy
Russian Federation, 117997, Moscow, Ac. Oparin str., 4Marina I. Kesova
Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russia
Email: m_kesova@oparina4.ru
ORCID iD: 0000-0001-7764-8073
Dr. Med. Sci., Senior Researcher at the Obstetric Department
Russian Federation, 117997, Moscow, Ac. Oparin str., 4Oleg R. Baev
Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russia; I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University), Moscow, Russia
Email: o_baev@oparina4.ru
ORCID iD: 0000-0001-8572-1971
Dr. Med. Sci., Professor, Head of the 1st Maternity Department, Professor at the Department of Obstetrics, Gynecology, Perinatology, and Reproductology
Russian Federation, 117997, Moscow, Ac. Oparin str., 4; 119991, Moscow, Trubetskaya str., 8-2Natalia E. Kan
Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russia
Email: kan-med@mail.ru
ORCID iD: 0000-0001-5087-5946
Dr. Med. Sci., Professor, Deputy Director for Science
Russian Federation, 117997, Moscow, Ac. Oparin str., 4Aleksandr I. Gus
Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russia; Patrice Lumumba Peoples' Friendship University of Russia
Email: a_gus@oparina4.ru
ORCID iD: 0000-0003-1377-3128
Dr. Med. Sci., Professor, Chief Researcher at the Department of Ultrasound and Functional Diagnostics, Head of the Department of Ultrasound Diagnostics, Medical Institute
Russian Federation, 117997, Moscow, Ac. Oparin str., 4; 127015, Moscow, Pistsovaya str., 10References
- Щербакова Е.А., Баранов А.Н., Истомина Н.Г. Исходы ранней и поздней форм задержки роста плода в зависимости от критериев диагностики. Вопросы гинекологии, акушерства и перинатологии. 2024; 23(3): 23-9. [Shcherbakova E.A., Baranov A.N., Istomina N.G. Outcomes of early- and late-onset fetal growth restriction according to diagnostic criteria. Gynecology, Obstetrics and Perinatology. 2024; 23(3): 23-9 (in Russian)]. https://dx.doi.org/10.20953/1726-1678-2024-3-23-29
- Тысячный О.В., Приходько А.М., Баев О.Р. Акушерские и неонатальные исходы самопроизвольных родов при крупном плоде в зависимости от срока гестации. Акушерство и гинекология. 2025; 4: 44-50. [Tysyachnyi O.V., Prikhodko A.M., Baev O.R. Obstetric and neonatal outcomes of spontaneous labor with a large fetus depending on the gestational age. Obstetrics and Gynecology. 2025; (4): 44-50 (in Russian)]. https://dx.doi.org/10.18565/aig.2025.36
- Hadlock F.P., Harrist R.B., Carpenter R.J., Deter R.L., Park S.K. Sonographic estimation of fetal weight. The value of femur length in addition to head and abdomen measurements. Radiology. 1984; 150(2): 535-40. https://dx.doi.org/10.1148/radiology.150.2.6691115
- Hadlock F.P., Harrist R.B., Sharman R.S., Deter R.L., Park S.K. Estimation of fetal weight with the use of head, body, and femur measurements – a prospective study. Am. J. Obstet. Gynecol. 1985; 151(3): 333-7. https://dx.doi.org/10.1016/0002-9378(85)90298-4
- Hammami A., Mazer Zumaeta A., Syngelaki A., Akolekar R., Nicolaides K.H. Ultrasonographic estimation of fetal weight: development of new model and assessment of performance of previous models. Ultrasound Obstet. Gynecol. 2018; 52(1): 35-43. https://dx.doi.org/10.1002/uog.19066
- Stirnemann J., Villar J., Salomon L.J., Ohuma E., Ruyan P., Altman D.G. et al. International estimated fetal weight standards of the INTERGROWTH-21(st) Project. Ultrasound Obstet. Gynecol. 2017; 49(4): 478-86. https://dx.doi.org/10.1002/uog.17347
- Cordier A.G., Russo F.M., Deprest J., Benachi A. Prenatal diagnosis, imaging, and prognosis in congenital diaphragmatic hernia. Semin. Perinatol. 2020; 44(1): 51163. https://dx.doi.org/10.1053/j.semperi.2019.07.002
- Kulseng C.P.S., Hillestad V., Eskild A., Gjesdal K.I. Automatic placental and fetal volume estimation by a convolutional neural network. Placenta. 2023; 134: 23-9. https://dx.doi.org/10.1016/j.placenta.2023.02.009
- Watzenboeck M.L., Heidinger B.H., Rainer J., Schmidbauer V., Ulm B., Rubesova E. et al. Reproducibility of 2D versus 3D radiomics for quantitative assessment of fetal lung development: a retrospective fetal MRI study. Insights Imaging. 2023; 14(1): 31. https://dx.doi.org/10.1186/s13244-023-01376-y
- Kadji C., Cannie M.M., Kang X., Carlin A., Etchoua S.B., Resta S. et al. Fetal magnetic resonance imaging at 36 weeks predicts neonatal macrosomia: the PREMACRO study. Am. J. Obstet. Gynecol. 2022; 226(2): 238.e1-e12. https://dx.doi.org/10.1016/j.ajog.2021.08.001
- Dütemeyer V., Cordier A.-G., Cannie M.M., Bevilacqua E., Huynh V., Houfflin-Debarge V. et al. Prenatal prediction of postnatal survival in fetuses with congenital diaphragmatic hernia using MRI: lung volume measurement, signal intensity ratio, and effect of experience. J. Matern. Neonatal. Med. 2022; 35(6): 1036-44. https://dx.doi.org/10.1080/14767058.2020.1740982
- Zaretsky M.V., Reichel T.F., McIntire D.D., Twickler D.M. Comparison of magnetic resonance imaging to ultrasound in the estimation of birth weight at term. Am. J. Obstet. Gynecol. 2003; 189(4): 1017-20. https://dx.doi.org/10.1067/s0002-9378(03)00895-0
- Kadji C., Cannie M.M., Resta S., Guez D., Abi-Khalil F., De Angelis R. et al. Magnetic resonance imaging for prenatal estimation of birthweight in pregnancy: review of available data, techniques, and future perspectives. Am. J. Obstet. Gynecol. 2019; 220(5): 428-39. https://dx.doi.org/10.1016/j.ajog.2018.12.031
- Kadji C., Bevilacqua E., Hurtado I., Carlin A., Cannie M.M., Jani J.C. Comparison of conventional 2D ultrasound to magnetic resonance imaging for prenatal estimation of birthweight in twin pregnancy. Am. J. Obstet. Gynecol. 2018; 218(1): 128.e1-e11. https://dx.doi.org/10.1016/j.ajog.2017.10.009
- Kadji C., De Groof M., Camus M.F., De Angelis R., Fellas S., Klass M. et al. The use of a software-assisted method to estimate fetal weight at and near term using magnetic resonance imaging. Fetal. Diagn. Ther. 2017; 41(4): 307-13. https://dx.doi.org/10.1159/000448950
- Specktor-Fadida B., Link-Sourani D., Rabinowich A., Miller E., Levchakov A., Avisdris N. et al. Deep learning–based segmentation of whole-body fetal MRI and fetal weight estimation: assessing performance, repeatability, and reproducibility. Eur. Radiol. 2024; 34(3): 2072-83. https://dx.doi.org/10.1007/s00330-023-10038-y
- Lo J., Nithiyanantham S., Cardinell J., Young D., Cho S., Kirubarajan A. et al. Cross Attention Squeeze Excitation Network (CASE-Net) for whole body fetal MRI segmentation. Sensors (Basel). 2021; 21(13): 4490. https://dx.doi.org/10.3390/s21134490
- Zhang T., Matthew J., Lohezic M., Davidson A., Rutherford M., Rueckert D. et al. Graph-based whole body segmentation in fetal MR images. Proceedings of the MICCAI Work PIPPI, Athens, Greece, 21 October 2016.
Supplementary files
