Features of serum lipidome in pregnant women with fetal macrosomia and a concurrence of macrosomia with gestational diabetes mellitus


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective. To elaborate an analytical approach to predicting fetal macrosomia (FM) on the basis of maternal serum lipidome analysis. Subjects and methods. A prospective cohort study enrolled 120pregnant women with FM and gestational diabetes mellitus (GDM). Serum lipid levels were analyzed by mass spectrometry. Results. The best prognostic models were obtained at 11-14 and 24-28 weeks’ gestation in women with GDM (the sensitivity and specificity were 0.91/0.96 and 0.93/0.96, respectively), at 11-14 weeks in the entire group and in patients without GDM (0.85/0.91 and 0.93/0.92). The findings make it possible to predict FM according to the presence or absence of GDM. Conclusion. The introduction of the developed models into obstetric practice will become a new tool for assessing the risk for FM, which will be able to reduce its rate and to improve maternal and perinatal outcomes.

Full Text

Restricted Access

About the authors

Victoriya A. Odinokova

Academician V. I. Kulakov Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: v_odinokova@oparina4.ru

Vitaliy V. Chagovets

Academician V. I. Kulakov Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: vvchagovets@gmail.com

Roman G. Shmakov

Academician V. I. Kulakov Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: r_shmakov@oparina4.ru

Nataliya L. Starodubtseva

Academician V. I. Kulakov Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: n_starodubtseva@oparina4.ru

Dinara Failievna Salimova

Academician V. I. Kulakov Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: Salimova.1993@mail.ru

Alexey S. Kononikhin

Academician V. I. Kulakov Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: konoleha@yandex.ru

Vladimir E. Frankevich

Academician V. I. Kulakov Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: v_frankevich@oparina4.ru

References

  1. Wassimi S., Wilkins R., Mchugh N.G.L., Xiao L., Simonet F., Luo Z.C. Association of macrosomia with perinatal and postneonatal mortality among First Nations people in Quebec. Can. Med. Assoc. J. 2011; 183(3): 322-6. https://dx.doi. org/10.1503/cmaj.100837
  2. Garcia-De la Torre J.I., Rodrguez-Valdez A., Delgado-Rosas A. Risk factors for fetal macrosomia in patients without gestational diabetes mellitus. Ginecol. Obstet. Mex. 2016; 84(3): 164-71.
  3. Luhete P.K., Mukuku O, Kiopin P.M., Tambwe A.M., Muenze P.K. Macrosomie fretale a Lubumbashi: facteurs de risque et pronostic maternel et perinatal. Pan Afr. Med. J. 2016; 23: 166. https://dx.doi.org/10.11604/pamj.2016.23.166.7362
  4. Chiavaroli V., Castorani V., Guidone P., Derraik J.G.B., Liberati M., Chiarelli F., Mohn A. Incidence of infants born small- and large-for-gestational-age in an Italian cohort over a 20-year period and associated risk factors. Ital. J. Pediatr. 2016; 42: 42. https://dx.doi.org/10.1186/s13052-016-0254-7
  5. Eskandar O., Shet D. Risk factors for 3rd and 4th degree perineal tear. J. Obstet. Gynaecol. 2009; 29(2): 119-22. https://dx.doi.org/10.1080/01443610802665090
  6. Бресский А.Г., Радецкая Л.Е., Мацуганова Т.Н., Прусакова О.И. Исходы родов у женщин с крупным плодом. В кн.: Достижения фундаментальной, клинической медицины и фармации. Материалы 71-й научной сессии сотрудников университета. 27-28 января 2016. Витебск: ВГМУ; 2016: 171-2.
  7. Gabbe S., Niebyl J., Simpson J., Landon M., Galan H., Jauniaux E. et al. Obstetrics: normal and problem pregnancies. 7th ed. Saunders Elsevier; 2017.
  8. Executive summary: Neonatal brachial plexus palsy. Report of the American College of Obstetricians and Gynecologists’ Task Force on Neonatal Brachial Plexus Palsy. Obstet. Gynecol. 2014; 123(4): 902-4. https://dx.doi. org/10.1097/01.AOG.0000445582.43112.9a
  9. Wang D., Hong Y., Zhu L., Wang X., Lv Q., Zhou Q. et al. Risk factors and outcomes of macrosomia in China: a multicentric survey based on birth data. J. Matern. Fetal Neonatal Med. 2017; 30(5): 623-7. https://dx.doi.org/10.1080/1 4767058.2016.1252746
  10. Knop M.R., Geng T., Gorny A.W., Ding R., Li C., Ley S.H., Huang T. Birth weight and risk of type 2 diabetes mellitus, cardiovascular disease, and hypertension in adults: a meta-analysis of 7 646 267 participants from 135 studies. J. Am. Heart Assoc. 2018; 7(23): e008870. https://dx.doi.org/10.1161/JAHA.118.008870
  11. Henriksen T. The macrosomic fetus: a challenge in current obstetrics. Acta Obstet. Gynecol. Scand. 2008; 87(2): 134-45. https://dx.doi. org/10.1080/00016340801899289
  12. Walsh J.M., McAuliffe F.M. Prediction and prevention of the macrosomic fetus. Eur. J. Obstet. Gynecol. Reprod. Biol. 2012; 162(2): 125-30. https://dx.doi. org/10.1016/j.ejogrb.2012.03.005
  13. Jameson J.L., De Groot L.J., de Kretser D.M., Giudice L.C., Grossman A.B., Melmed S. et al. Endocrinology: adult and pediatric. vol. 1-2. Saunders Elsevier; 2016.
  14. Schaefer-Graf U.M., Meitzner K., Ortega-Senovilla H., Graf K., Vetter K., Abou-Dakn M., Herrera E. Differences in the implications of maternal lipids on fetal metabolism and growth between gestational diabetes mellitus and control preg nancies. Diabet. Med. 2011; 28(9): 1053-9. https://dx.doi.org/10.1111/j.1464-5491.2011.03346.x
  15. Schaefer-Graf U.M., Graf K., Kulbacka I., Kjos S.L., Dudenhausen J., Vetter K., Herrera E. Maternal lipids as strong determinants of fetal environment and growth in pregnancies with gestational diabetes mellitus. Diabetes Care. 2008; 31(9): 1858-63. https://dx.doi.org/10.2337/dc08-0039
  16. Ciborowski M., Zbucka-Kretowska M., Bomba-Opon D., Wielgos M., Brawura-Biskupski-Samaha R., Pierzynski P. Potential first trimester metabolomic biomarkers of abnormal birth weight in healthy pregnancies. Prenat. Diagn. 2014; 34(9): 870-7. https://dx.doi.org/10.1002/pd.4386
  17. Sud M., Fahy E., Cotter D., Brown A., Dennis E.A., Glass C.K. et al. LMSD: LIPID MAPS structure database. Nucleic Acids Res. 2007; 35 (Database issue): D527-32. https://dx.doi.org/10.1093/nar/gkl838
  18. Liebisch G., Vizcaino J.A., Kofeler H., TrotzmUller M., Griffiths W.J., Schmitz G. et al. Shorthand notation for lipid structures derived from mass spectrometry. J. Lipid Res. 2013; 54(6): 1523-30. https://dx.doi.org/10.1194/jlr.M033506
  19. Team R.C. R: A language and environment for statistical computing. R Foundation for statistical computing. Vienna, Austria; 2015. Available at: https:// www.r-project.org/
  20. RStudio: Integrated development for environment R. Available at: http://www. rstudio.com/
  21. Wold S., Sjostrom M., Eriksson L. PLS-regression: a basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001; 58: 109-30. https://dx.doi.org/10.1016/ S0169-7439(01)00155-1
  22. Thevenot E.A., Roux A., Xu Y., Ezan E., Junot C. Analysis of the human adult urinary metabolome variations with age, body mass index, and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses. J. Proteome Res. 2015; 14(8): 3322-35. https://dx.doi.org/10.1021/ acs.jproteome.5b00354
  23. Barber M.N., Risis S., Yang C., Meikle P.J., Staples M., Febbraio M.A., Bruce C.R. Plasma lysophosphatidylcholine levels are reduced in obesity and type 2 diabetes. PLoS One. 2012; 7(7): e41456. https://dx.doi.org/10.1371/ journal.pone.0041456
  24. Floegel A., Stefan N., Yu Z., Muhlenbruch K., Drogan D., Joost H.G. et al. Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes. 2013; 62(2): 639-48. https://dx.doi. org/10.2337/db12-0495.
  25. Suvitaival T., Bondia-Pons I., Yetukuri L., Poho P., Nolan J.J., Hyotylainen T. et al. Lipidome as a predictive tool in progression to type 2 diabetes in Finnish men. Metabolism. 2018; 78: 1-12. https://dx.doi.org/10.1016/j.metabol.2017.08.014
  26. Zeghari N., Vidal H., Younsi M., Ziegler O., Drouin P., Donner M. Adipocyte membrane phospholipids and PPAR-y expression in obese women: relationship to hyperinsulinemia. Am. J. Physiol. Metab. 2000; 279(4): E736-43. https:// dx.doi.org/10.1152/ajpendo.2000.279.4.E736
  27. Patel N., Hellmuth C., Uhl O., Godfrey K., Briley A., Welsh P. et al. Cord metabolic profiles in obese pregnant women: insights into offspring growth and body composition. J. Clin. Endocrinol. Metab. 2018; 103(1): 346-55. https://dx.doi. org/10.1210/jc.2017-00876

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Bionika Media