Prospects for using exome sequencing to solve problems in human reproduction (Part II)


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Part 2 of the review considers various purposes of exome (targeted) sequencing to f ind the causes of reproductive losses, as well as the difficulties of using NGS in reproduction. The authors present their own data and literature ones on the use of NGS to identify lethal fetal phenotypes caused by autosomal recessive monogenic disorders (α-thalassemia; multiple pterygium syndrome, galactosialidosis; mucopolysaccharidosis type VII), autosomal dominant ones (thanatophoric dysplasia; type 2 osteogenesis imperfecta; achondroplasia; tuberous sclerosis 1) and X-linked diseases (incontinentia pigmenti, Goltz syndrome, Rett syndrome, immune dysregulation, polyendocrinopathy, and enteropathy). They thoroughly consider the use of NGS for preconception screening that allows optimization of algorithms to manage a future pregnancy: the choice of diagnostic procedures; recommendations for therapeutic abortion; counseling, pregnancy planning, donation, and prenatal genetic testing. The paper presents the features of and prospects for the introduction of NGS in practical reproductology. Conclusion: It is necessary to introduce exome sequencing in accordance with the concept of a clinical genetic reproduction passport, especially at the preconception stage, along with the already expanding neonatal screening, which will be able to increase birth rates, to ensure a safe pregnancy, and to enhance the reproductive potential of the Russian population.

Full Text

Restricted Access

About the authors

Oleg S. Glotov

O. Ott Research Institute of Obstetrics, Gynecology, and Reproductology; Pediatric Research and Clinical Center for Infectious Diseases, Federal Biomedical Agency

Email: olglotov@mail.ru
PhD, Senior Researcher at the Department of Genomic Medicine

Alexander N. Chernov

O. Ott Research Institute of Obstetrics, Gynecology, and Reproductology

Email: al.chernov@mail.ru
PhD, Researcher at the Department of Genomic Medicine

Andrey S. Glotov

O. Ott Research Institute of Obstetrics, Gynecology, and Reproductology

Email: anglotov@mail.ru
Dr. Bio. Sci, Head of the Department of Genomic Medicine

Vladislav S. Baranov

O. Ott Research Institute of Obstetrics, Gynecology, and Reproductology

Email: vsbar40@mail.ru
Dr. Med. Sci., Professor, Corresponding Member of the Russian Academy of Sciences, geneticist of the highest category, Chief Researcher of the Department of Genomic Medicine

References

  1. Khera A.V., Chaffin M., Aragam K.G., Haas M.E., Roselli C., Choi S.H. et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat Genet. 2018; 50: 1219-24. https://dx.doi.org/10.1038/s41588-018-0183-z.
  2. Pushpakom S., Iorio F., Eyers P.A., Escott K.J., Hopper S., Wells A. et al. Drug repurposing: progress, challenges and recommendations. Nat. Rev. Drug Discov. 2019; 18(1): 41-58. https://dx.doi.org/10.1038/nrd.2018.168.
  3. Capalbo A., Poli M., Riera-Escamilla A., Shukla V., Kudo H0ffding M., Krausz C. et al. Preconception genome medicine: current state and future perspectives to improve infertility diagnosis and reproductive and health outcomes based on individual genomic data. Hum. Reprod. Update. 2021; 27(2): 254-79. https://dx.doi.org/10.1093/humupd/dmaa044.
  4. Mascarenhas M.N., Flaxman S.R., Boerma T., Vanderpoel S., Stevens G.A. National, regional, and global trends in infertility prevalence. since 1990: a systematic analysis of 277 health surveys. PLoS Med. 2012 ;9: e1001356. https://dx.doi.org/10.1371/journal.pmed.1001356.
  5. Rajcan-Separovic E. Next generation sequencing in recurrent pregnancy loss-approaches and outcomes. Eur. J. Med. Genet. 2020; 63(2): 103644. https://dx.doi.org/10.1016/j.ejmg.2019.04.001.
  6. Filges I., Nosova E., Bruder E., Tercanli S., Townsend K., Gibson W.T. et al. Exome sequencing identifies mutations in KIF14 as a novel cause of an autosomal recessive lethal fetal ciliopathy phenotype. Clin. Genet. 2014; 86 (3): 220-8. https://dx.doi.org/10.1111/cge.12301.
  7. Reilly M.L., Stokman M.F., Magry V., Jeanpierre C., Alves M., Paydar M. et al. Loss of function mutations in KIF14 cause severe microcephaly and kidney development defects in humans and zebrafish. Hum. Mol. Genet. 2019; 28(5): 778-95. https://dx.doi.org/10.1093/hmg/ddy381.
  8. Qiao Y., Wen J., Tang F., Martell S., Shomer N., Leung P.C. et al. Whole exome sequencing in recurrent early pregnancy loss. Mol. Hum. Reprod. 2016; 22(5): 364-72. https://dx.doi.org/10.1093/molehr/gaw008.
  9. Rae W., Gao Y., Bunyan D., Holden S., Gilmour K., Patel S. et al. A novel FOXP3 mutation causing fetal akinesia and recurrent male miscarriages. Clin. Immunol. 2015; 161(2): 284-5. https://dx.doi.org/10.1016/j.clim.2015.09.006.
  10. Shamseldin H.E., Kurdi W., Almusafri F., Alnemer M., Alkaff A., Babay Z. et al. Molecular autopsy in maternal-fetal medicine. Genet. Med. 2018; 20(4): 420-7. https://dx.doi.org/10.1038/gim.2017.111.
  11. Fu M., Mu S., Wen C., Jiang S., Li L., Meng Y. et al. Wholeexome sequencing analysis of products of conception identifies novel mutations associated with missed abortion. Mol. Med. Rep. 2018; 18(2): 2027-32. https://dx.doi.org/10.3892/mmr.2018.9201.
  12. Stals K.L., Wakeling M., Baptista J., Caswell R., Parrish A., Rankin J. et al. Diagnosis of lethal or prenatal-onset autosomal recessive disorders by parental exome sequencing. Prenat. Diagn. 2018; 38(1): 33-43. https://dx.doi.org/10.1002/pd.517.
  13. Quintero-Ronderos P., Mercier E., Fukuda M., Gonzalez R., Suarez C.F., Patarroyo M.A. et al. Novel genes and mutations in patients affected by recurrent pregnancy loss. PLoS One. 2017; 12(10): e0186149. https://dx.doi.org/10.1371/journal.pone.0186149.
  14. Chen Y., Bartanus J., Liang D., Zhu H., Breman A.M., Smith J.L. et al. Characterization of chromosomal abnormalities in pregnancy losses reveals critical genes and loci for human early development. Hum. Mutat. 2017; 38(6): 669-77. https://dx.doi.org/10.1002/humu.23207.
  15. Liu H., Mao B., Xu X., Liu L., Ma X., Zhang X. The effectiveness of next-generation sequencing-based preimplantation genetic testing for balanced translocation couples. Cytogenet. Genome Res. 2020; 160(11-12): 625-33. https://dx.doi.org/10.1159/000512847.
  16. Chong J.X., Buckingham K.J., Jhangiani S.N., Boehm C., Sobreira N., Smith J.D. et al. The genetic basis of mendelian phenotypes: discoveries, challenges, and opportunities. Am. J. Hum. Genet. 2015; 97: 199-215. https://dx.doi.org/10.1016/j.ajhg.2015.06.009.
  17. Fridman H., Yntema H. G., Magi R., Andreson R., Metspalu A., Mezzavila M. et al. The landscape of autosomal-recessive pathogenic variants in European populations reveals phenotype-specific effects. Am. J. Hum. Genet. 2021; 108(4): 608-19. https://dx.doi.org/10.1016/j.ajhg.2021.03.004.
  18. Hamamy H., Antonarakis S. E., Cavalli-Sforza L.L., Temtamy S., Romeo G., Kate L.P. et al. Consanguineous marriages, pearls and perils: Geneva international consanguinity workshop report. Genet. Med. 2011; 13: 841-7. https://dx.doi.org/10.1097/GIM.0b013e318217477f.
  19. Лязина Л.В., Бодюль Н.Н., Вохмянина Н.В., Ефимова А.Г., Серебрякова Е.А., Иващенко Т.Э., Глотов О.С., Глотов А.С., Романова О.В., Куранова М.Л., Василишина А.А., Суспицын Е.Н., Михайлов А.В., Сарана А.М., Щербак С.Г., Баранов В.С. Возможности оказания медицинской помощи в современных условиях на примере семьи с наследственной патологией. Медицинская генетика. 2017; 16(10): 51-4.
  20. de Wert G., Dondorp W., Clarke A., Dequeker E.M.C., Cordier C., Deans Z. et al. Opportunistic genomic screening. Recommendations of the European Society of Human Genetics. Eur. J. Hum. Genet. 2021; 29(3): 365-77. https://dx.doi.org/10.1038/s41431-020-00758-w.
  21. Cousens N.E., Gaff C.L., Metcalfe S.A., Delatycki M.B. Carrier screening for beta-thalassaemia: a review of international practice. Eur. J. Hum. Genet. 2010; 18(10): 1077-83. https://dx.doi.org/10.1038/ejhg.2010.90.
  22. Calhaz-Jorge C., De Geyter C., Kupka M.S., de Mouzon J., Erb K., Mocanu E. et al. Assisted reproductive technology in Europe, 2013: results generated from European registers by ESHRE. Hum. Reprod. 2017; 32(10): 1957-73. https://dx.doi.org/10.1093/humrep/dex264.
  23. Martin J., Asan Yi Y., Alberola T., Rodriguez-Iglesias B., Jimenez-Almazan J., Li Q. et al. Comprehensive carrier genetic test using next-generation deoxyribonucleic acid sequencing in infertile couples wishing to conceive through assisted reproductive technology. Fertil. Steril. 2015; 104(5): 1286-93. https://dx.doi.org/10.1016/j.fertnstert.2015.07.1166.
  24. Henneman L., Borry P., Chokoshvili D., Cornel M.C., van El C.G., Forzano F. et al. Responsible implementation of expanded carrier screening. Eur. J. Hum. Genet. 2016; 24: e1-e12. https://dx.doi.org/10.1038/ejhg.2015.271.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies