Clinical and laboratory characteristics of patients with embryonic arrest in the early embryonic period of in vitro fertilization programs

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective: To investigate the clinical and hormonal parameters and outcomes of in vitro fertilization (IVF) programs in patients with impaired embryo cleavage compared to those in patients with embryos suitable for transfer.

Materials and methods: Patients meeting the inclusion and non-inclusion criteria were divided into two groups. Group 1 (study group) included 287 patients with arrested embryogenesis, that is fertilized oocytes were present, and the embryos stopped fragmenting in the early or late stages of culture. Group 2 (control group) included 483 patients with the presence of a blastocyst on the 5th or 6th day of culture. Ovarian stimulation was conducted according to standard protocols using gonadotropin-releasing hormone agonists or antagonists. Fertilization of the aspirated oocytes was performed using IVF or ICSI.

Results: Clinical factors associated with impaired embryo development in women of reproductive age included late reproductive age of 38 (34.5; 41) and 35 (32;39) years in groups 1 and 2, respectively; reduced ovarian reserve in 71.8% and 24.4% patients in groups 1 and 2, respectively; history of missed miscarriage in 59.6% and 16% of women in groups 1 and 2 among patients with a history of pregnancy; infertility of unknown origin in 40.1% and 12%, respectively; extragenital endometriosis in 16% and 8.9% of women in groups 1 and 2, respectively.

Conclusion: The development of embryos in the early stages of culture and the frequency of blastocyst formation depend on the number of mature oocytes and zygotes obtained, which in turn are determined by the age of the patient and the state of the ovarian reserve. A history of missed miscarriage, infertility of unknown origin, extragenital endometriosis, and impaired embryo development in previous IVF attempts may be risk factors for embryonic arrest in young women, even if at least 5 mature oocytes and at least 3 zygotes are obtained.

Full Text

Restricted Access

About the authors

Mariam T. Pogosyan

Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Author for correspondence.
Email: mariam-pogosyan@yandex.ru

PhD student

Russian Federation, 117997, Moscow, Ac. Oparina str., 4

Tatyana A. Nazarenko

Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: t_nazarenko@oparina4.ru

Dr.Med. Sci., Professor, Head of the Institute of Reproductive Medicine

Russian Federation, 117997, Moscow, Ac. Oparina str., 4

Emil A. Gaysin

Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: emil.g17@mail.ru

Embryologist, Clinical embryology laboratory employee

Russian Federation, 117997, Moscow, Ac. Oparina str., 4

References

  1. Lemmen J.G., Rodríguez N.M., Andreasen L.D., Loft A., Ziebe S. The total pregnancy potential per oocyte aspiration after assisted reproduction – in how many cycles are biologically competent oocytes available? J. Assist. Reprod. Genet. 2016; 33(7): 849-54. https://dx.doi.org/10.1007/s10815-016-0707-3.
  2. Xu Y., Shi Y., Fu J., Yu M., Feng R., Sang Q. et al. Mutations in PADI6 cause female infertility characterized by early embryonic arrest. Am. J. Hum. Genet. 2016; 99: 744-52. https://dx.doi.org/10.1016/j.ajhg.2016.06.024.
  3. Chen B.,Wang W., Peng X., Jiang H., Zhang S., Li D. et al. The comprehensive mutational and phenotypic spectrum of TUBB8 in female infertility. Eur. J. Hum. Genet. 2019; 27(2): 300-7. https://dx.doi.org/10.1038/ s41431-018-0283-3.
  4. Zheng W., Hu H., Dai J., Zhang S., Gu Y., Dai C. et al. Expanding the genetic and phenotypic spectrum of the subcortical maternal complex genes in recurrent preimplantation embryonic arrest. Clin. Genet. 2021; 99(2): 286-91. https://dx.doi.org/10.1111/cge.13858.
  5. Zhao L., Xue S., Yao Z., Shi J., Chen B., Wu L. et al. Biallelic mutations in CDC20 cause female infertility characterized by abnormalities in oocyte maturation and early embryonic development. Protein Cell. 2020; 11(12): 921-7.
  6. Yang Y., Shi L., Fu X., Ma G., Yang Z., Li Y. et al. Metabolic and epigenetic dysfunction underlie the arrest of in vitro fertilized human embryos in a senescent-like state. PLoS Biol. 2022; 20(6): e3001682. https://dx.doi.org/10.1371/journal.pbio.3001682.
  7. Hsieh R.H., Au H.K., Yeh T.S., Chang S.J., Cheng Y.F., Tzeng C.R. Decreased expression of mitochondrial genes in human unfertilized oocytes and arrested embryos. Fertil. Steril. 2004; 81(Suppl. 1): 912-8. https://dx.doi.org/10.1016/ j.fertnstert.2003.11.013.
  8. Мартиросян Я.О., Назаренко Т.А., Кадаева А.И., Краснова В.Г., Бирюкова А.М., Погосян М.Т. Новые подходы к изучению регуляции преимплантационного развития эмбрионов. Акушерство и гинекология. 2023; 6: 29-37. [Martirosyan Ya.O., Nazarenko T.A., Kadaeva A.I., Krasnova V.G., Biryukova A.M., Pogosyan M.T. New approaches to studying the regulation of preimplantation embryonic development. Obstetrics and Gynecology. 2023; (6): 29-37. (in Russian)]. https://dx.doi.org/10.18565/aig.2023.10.
  9. Albertini D.F., Sanfins A., Combelles C.M. Origins and manifestations of oocyte maturation competencies. Reprod. Biomed. Online. 6(4): 410-5. https://dx.doi.org/10.1016/s1472-6483(10)62159-1.
  10. Montjean D., Geoffroy-Siraudin C., Gervoise-Boyer M.J., Boyer P. Competence of embryos showing transient developmental arrest during in vitro culture. J. Assist. Reprod. Genet. 2021; 38(4): 857-63. https://dx.doi.org/10.1007/ s10815-021-02090-8.
  11. Wei Y., Wang J., Qu R., Zhang W., Tan Y., Sha Y. et al. Genetic mechanisms of fertilization failure and early embryonic arrest: a comprehensive review. Hum. Reprod. Update. 2023; 30(1): 48-80. https://dx.doi.org/10.1093/humupd/dmad026.
  12. McCollin A., Swann R.L., Summers M.C., Handyside A.H., Ottolini C.S. Abnormal cleavage and developmental arrest of human preimplantation embryos in vitro. Eur. J. Med. Genet. 2020; 63(2): 103651. https://dx.doi.org/10.1016/ j.ejmg.2019.04.008.
  13. Sipahi M., Mümüşoğlu S., Coşkun Akçay N., Sever A., Yeğenoğlu H., Bozdağ G., Karakoç Sökmensüer L. The impact of using culture media containing granulocyte-macrophage colony-stimulating factor on live birth rates in patients with a histpry of embryonic developmental arrest in previous in vitro fertilization cycles. J. Turk. Ger. Gynecol. Assoc. 2021; 22(3): 181-6. https://dx.doi.org/10.4274/jtgga.galenos.2021.2020.0168.
  14. Civico S., Agell N., Bachs O., Vanrell J.A., Balasch J. Increased expression of the cyclin-dependent kinase inhibitor p27 in cleavage-stage human embryos exhibiting developmental arrest. Mol. Hum. Reprod. 2002; 8(10): 919-22. https://dx.doi.org/10.1093/molehr/8.10.919.
  15. Ming L., Yuan C., Ping L., Jie Q. Higher abnormal fertilization, higher cleavage rate and higher arrested embryos rate were found in conventional IVF than in intracytoplasmic sperm injection. Clin. Exp. Obstet. Gynecol. 2015; 42(3): 372-5.
  16. Bayram A., Elkhatib I., Arnanz A., Linan A., Ruiz F., Lawrenz B., Fatemi H.M. What drives embryo development? Chromosomal normality or mitochondria? Case Rep. Genet. 2017; 2017: 4397434. https://dx.doi.org/10.1155/2017/ 4397434.
  17. Martínez-Moro Á., Lamas-Toranzo I., González-Brusi L., Pérez-Gómez A., Padilla-Ruiz E., García-Blanco J. mtDNA content in cumulus cells does not predict development to blastocyst or implantation. Hum. Reprod. Open. 2022; 2022(3): hoac029. https://dx.doi.org/10.1093/hropen/hoac029.
  18. Zamora R.B., Sánchez R.V., Pérez J.G., Díaz R.R., Quintana D.B., Bethencourt J.C. Human zygote morphological indicators of higher rate of arrest at the first cleavage stage. Zygote. 2011; 19(4): 339-44. https://dx.doi.org/10.1017/s0967199410000407.
  19. Sfakianoudis K., Maziotis E., Karantzali E., Kokkini G., Grigoriadis S., Pantou A. et al. Molecular drivers of developmental arrest in the human preimplantation embryo: a systematic review and critical analysis leading to mapping future research. Int. J. Mol. Sci. 2021; 22(15): 8353. https://dx.doi.org/10.3390/ijms22158353.
  20. Alpha Scientists in Reproductive Medicine and ESHRE Special Interest Group of Embryology. The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum. Reprod. 2011; 26(6): 1270-83.
  21. Janny L., Menezo Y.J. Maternal age effect on early human embryonic development and blastocyst formation. Mol. Reprod. Dev. 1996; 45(1): 31-7. https://dx.doi.org/10.1002/(SICI)1098-2795(199609)45:<31AID-MRD4>3.0.СО;2-T.
  22. Dai X., Wang Y., Yang H., Gao T., Yu C., Cao E. et al. AMH has no role in predicting oocyte quality in women with advanced age undergoing advanced age undergoing IVF/ICSI. Sci. Rep. 202o; 10(1): 19750. https://dx.doi.org/10.1038/s41598-020-76543-y.
  23. ESHRE Special Interest Group of Embryology, and Alpha Scientists in Reproductive Medicine, The Vienna consensus: report of an expert meeting on the development of art laboratory performance indicators. Reprod. Biomed. Onine. 2017; 35(5): 494-510. https://dx.doi.org/101016/j.rbmo.2017.06.015.
  24. Lin P.Y., Lin C.Y., Tsai N.C., Huang F.J., Chiang H.J., Lin Y.J. et al.Disposition of embryos from women who only produced morphologically poor embryos on day three. Biomed. J. 2002.; 45(1): 190-9. https://dx.doi.org/10.1016/ j.bj.2021.01.001.
  25. Haas J., Meriano J., Bassil R., Barzilay E., Casper R.F. What is the optimal timing of embryo transfer when there are only one or two embryos at cleavage stage? Gynecol. Endocrinol. 2019; 35(8): 665-8. https://dx.doi.org/10.1080/ 09513590.2019.1580259.
  26. Lee S.H., Lee H.S., Lim CK., Park Y.S., Yang K.M., Park D. Comparison of the clinical outcomes of the day 4 and 5 of embryo transfer cycles. 2013; 40(3): 122-5. https://dx.doi.org/10.5653/cerm.2013.40.3.122.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1.

Download (11KB)
3. Fig.2.

Download (15KB)
4. Fig.3.

Download (21KB)

Copyright (c) 2024 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies