Sialidase activity of vaginal bacteria in reproductive-age women


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

Bacterial sialidase activity catalyzes the degradation of protective mucosal barriers. Objective: To investigate sialidase activity of vaginal bacteria and identify sialidase genotypes and phenotypes of different species of Gardnerella spp. Materials and methods: A semiquantitative sialidase assay was developed and used to test 89 strains of vaginal bacteria, including 19 strains of Gardnerella spp. The Gardnerella spp. species were identified by DNA sequencing. Gardnerella spp. sialidase genes were detected by PCR. Results: Sialidase activity was detected in 8 strains belonging to three genera, including Anaerococcus (n=1), Bif idobacterium (n=1), and Gardnerella (n=6). G. vaginalis represented the majority of the Gardnerella strains (n=16, 84%); the proportion of G. swidsinskii was (n=3, 16%). Nine strains of G. vaginalis had only the nanH1 gene and all of these strains did not exhibit sialidase activity. The remaining seven strains of G. vaginalis simultaneously had the nanH1 and nanH3 genes, and sialidase activity was registered in 6 strains. No sialidase genes were detected in any G. swidsinskii strain. Conclusion: Most cultured species of vaginal bacteria, including lactobacilli, do not produce sialidase activity. The predominant species of the genus Gardnerella is G. vaginalis (84%); the proportion of G. swidsinskii is 16%. Bifidobacterium bifidum, Anaerococcus tetradius strains and most strains of G. vaginalis, whose genome contains both the nanH1 and nanH3 genes, can degrade sialoglicans. G. swidsinskii strains, as well as G. vaginalis strains with only the nanH1 gene, do not exhibit sialidase activity.

Толық мәтін

Рұқсат жабық

Авторлар туралы

Elena Shipitsyna

D.O. Ott Research Institute of Obstetrics, Gynecology, and Reproductology

Email: shipitsyna@inbox.ru
Dr. Bio. Sci., Leading Researcher, International Department

Sofia Korkina

St. Petersburg State University; D.O. Ott Research Institute of Obstetrics, Gynecology, and Reproductology

Email: ksa53@outlook.com
student at the Department of Microbiology; performing final qualification work at the Department of Medical Microbiology

Anna Krysanova

D.O. Ott Research Institute of Obstetrics, Gynecology, and Reproductology; St. Petersburg State Pediatric Medical University, Ministry of Health of Russia

Email: krusanova.anna@mail.ru
Researcher, Department of Medical Microbiology; Assistant, Department of Clinical Laboratory Diagnostics

Kseniya Kolousova

D.O. Ott Research Institute of Obstetrics, Gynecology, and Reproductology; St. Petersburg State University; St. Petersburg State Pediatric Medical University, Ministry of Health of Russia

Email: gimkolos@gmail.com
student at the Department of Microbiology; performing final qualification work in the Group of Experimental Microbiology

Kira Shalepo

D.O. Ott Research Institute of Obstetrics, Gynecology, and Reproductology; St. Petersburg State Pediatric Medical University, Ministry of Health of Russia

Email: 2474l5l@mail.ru
PhD (Bio), Senior Researcher, Department of Medical Microbiology; Associate Professor, Department of Clinical Laboratory Diagnostics

Olga Budilovskaya

D.O. Ott Research Institute of Obstetrics, Gynecology, and Reproductology; St. Petersburg State Pediatric Medical University, Ministry of Health of Russia

Email: o.budilovskaya@gmail.com
Researcher, Department of Medical Microbiology; Assistant, Department of Clinical Laboratory Diagnostics

Tatiana Khusnutdinova

D.O. Ott Research Institute of Obstetrics, Gynecology, and Reproductology; St. Petersburg State Pediatric Medical University, Ministry of Health of Russia

Email: husnutdinovat@yandex.ru
Researcher, Department of Medical Microbiology; Assistant, Department of Clinical Laboratory Diagnostics

Alevtina Savicheva

D.O. Ott Research Institute of Obstetrics, Gynecology, and Reproductology; St. Petersburg State Pediatric Medical University, Ministry of Health of Russia

Email: savitcheva@mail.ru
Head of the Department of Clinical Laboratory Diagnostics

Igor Kogan

D.O. Ott Research Institute of Obstetrics, Gynecology, and Reproductology

Email: ovr@ott.ru
Corresponding Member of the RAS, Dr. Med. Sci., Professor, Director

Әдебиет тізімі

  1. Glanz V.Y., Myasoedova V.A., Grechko A.V., Orekhov A.N. Sialidase activity in human pathologies. Eur. J. Pharmacol. 2019; 842: 345-50. https://dx.doi.org/10.1016/J.EJPHAR.2018.11.014.
  2. Vagios S., Mitchell C.M. Mutual preservation: a review of interactions between cervicovaginal mucus and microbiota. Front. Cell. Infect. Microbiol. 2021; 11: 676114. https://dx.doi.org/10.3389/fcimb.2021.676114.
  3. Lacroix G., Gouyer V., Gottrand F., Desseyn J.L. The cervicovaginal mucus barrier. Int. J. Mol. Sci. 2020; 21(21): 8266. https://dx.doi.org/10.3390/ijms21218266.
  4. Robinson L.S., Schwebke J., Lewis W.G., Lewis A.L. Identification and characterization of NanH2 and NanH3, enzymes responsible for sialidase activity in the vaginal bacterium Gardnerella vaginalis. J. Biol. Chem. 2019; 294(14): 5230-45. https://dx.doi.org/10.1074/jbc.RA118.006221.
  5. Agarwal K., Lewis A.L. Vaginal sialoglycan foraging by Gardnerella vaginalis: mucus barriers as a meal for unwelcome guests? Glycobiology. 2021; 31(6): 667-80. https://dx.doi.org/10.1093/glycob/cwab024.
  6. Vaneechoutte M., Guschin A., Van Simaey L., Gansemans Y., Van Nieuwerburgh F., Cools P. Emended description of Gardnerella vaginalis and description of Gardnerella leopoldii sp. nov., Gardnerella piotii sp. nov. and Gardnerella swidsinskii sp. nov., with delineation of 13 genomic species within the genus Gardnerella. Int. J. Syst. Evol. Microbiol. 2019; 69(3): 679-87. https://dx.doi.org/10.1099/ijsem.0.003200.
  7. Hill J.E., Albert A.Y.K. Resolution and co-occurrence patterns of Gardnerella leopoldii, Gardnerella swidsinskii, Gardnerella piotii and Gardnerella vaginalis within the vaginal microbiome. Infect. Immun. 2019; 87(12): e00532-19. https://dx.doi.org/10.1128/IAI.00532-19.
  8. Vancuren S.J., Hill J.E. Update on cpnDB: a reference database of chaperonin sequences. Database (Oxford). 2019; 2019: baz033. https://dx.doi.org/10.1093/DATABASE/BAZ033.
  9. Maier T., Pleckaityte M. Discrimination of Gardnerella species by combining MALDI-TOF protein profile, chaperonin cpn60 sequences, and phenotypic characteristics. Pathogens. 2021; 10(3): 277. https://dx.doi.org/10.3390/pathogens10030277.
  10. Tailford L.E., Crost E.H., Kavanaugh D., Juge N. Mucin glycan foraging in the human gut microbiome. Front. Genet. 2015; 6: 81. https://dx.doi.org/10.3389/FGENE.2015.00081.
  11. Moncla B.J., Braham P., Hillier S.L. Sialidase (neuraminidase) activity among gram-negative anaerobic and capnophilic bacteria. J. Clin. Microbiol. 1990; 28(3): 422-5. https://dx.doi.org/10.1128/JCM.28.3.422-425.1990.
  12. Briselden A.M., Moncla B.J., Stevens C.E., Hillier S.L. Sialidases (neuraminidases) in bacterial vaginosis and bacterial vaginosis-associated microflora. J. Clin. Microbiol. 1992; 30(3): 663-6. https://dx.doi.org/10.1128/jcm.30.3.663-666.1992.
  13. van Tassell M.L., Miller M.J. Lactobacillus adhesion to mucus. Nutrients. 2011; 3: 613-36. https://dx.doi.org/10.3390/NU3050613.
  14. Ravcheev D.A., Thiele I. Comparative genomic analysis of the human gut microbiome reveals a broad distribution of metabolic pathways for the degradation of host-synthetized mucin glycans and utilization of mucin-derived monosaccharides. Front. Genet. 2017; 8: 11. https://dx.doi.org/10.3389/FGENE.2017.00111.
  15. Parker D., Soong G., Planet P., Brower J., Ratner A.J., Prince A. The NanA neuraminidase of Streptococcus pneumoniae is involved in biofilm formation. Infect. Immun. 2009; 77(9): 3722-30. https://dx.doi.org/10.1128/IAI.00228-09.
  16. Thum C., Roy N.C., McNabb W.C., Otter D.E., Cookson A.L. In vitro fermentation of caprine milk oligosaccharides by bifidobacteria isolated from breast-fed infants. Gut Microbes. 2015; 6(6): 352-63. https://dx.doi.org/10.1080/19490976.2015.1105425.
  17. Milani C., Turroni F., Duranti S., Lugli G.A., Mancabelli L., Ferrario C. et al. Genomics of the genus bifidobacterium reveals species-specific adaptation to the glycan-rich gut environment. Appl. Environ. Microbiol. 2015; 82(4): 980-91. https://dx.doi.org/10.1128/AEM.03500-15.
  18. Smayevsky J., Canigia L.F., Lanza A., Bianchini H. Vaginal microflora associated with bacterial vaginosis in nonpregnant women: reliability of sialidase detection. Infect. Dis. Obstet. Gynecol. 2001; 9(1): 17-22. https://dx.doi.org/10.1155/S1064744901000047.
  19. Moncla B.J., Chappell C.A., Mahal L.K., Debo B.M., Meyn L.A., Hillier S.L. Mucinase and sialidase activity of the vaginal microflora: implications for the pathogenesis of preterm labour. Int. J. STD AIDS. 1999; 10(7): 442-7. https://dx.doi.org/10.1258/0956462991914438.
  20. Cauci S., Driussi S., Monte R., Lanzafame P., Pitzus E., Quadrifoglio F. Immunoglobulin A response against Gardnerella vaginalis hemolysin and sialidase activity in bacterial vaginosis. Am. J. Obstet. Gynecol. 1998; 178(3): 511-5. https://dx.doi.org/10.1016/S0002-9378(98)70430-2.
  21. Marconi C., Donders G., Bellen G., Brown D., Parada C., Silva M. Sialidase activity in aerobic vaginitis is equal to levels during bacterial vaginosis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2013; 167(2): 205-9. https://dx.doi.org/10.1016/j.ejogrb.2012.12.003.
  22. Santos-Greatti M.M. de V., da Silva M.G., Ferreira C.S.T., Marconi C. Cervicovaginal cytokines, sialidase activity and bacterial load in reproductive-aged women with intermediate vaginal flora. J. Reprod. Immunol. 2016; 118: 36-41. https://dx.doi.org/10.1016/j.jri.2016.08.005.
  23. Donders G.G.G., Bellen G., Grinceviciene S., Ruban K., Vieira-Baptista P. Aerobic vaginitis: no longer a stranger. Res. Microbiol. 2017; 168(4): 845-58. https://dx.doi.org/10.1016/j.resmic.2017.04.004.
  24. Donders G.G.G., Bellen G., Rezeberga D. Aerobic vaginitis in pregnancy. BJOG. 2011; 118(10): 1163-70. https://dx.doi.org/10.1111/j.1471-0528.2011.03020.x.
  25. Howe L., Wiggins R., Soothill P.W., Millar M.R., Horne P.J., Corfield A.P. Mucinase and sialidase activity of the vaginal microflora: Implications for the pathogenesis of preterm labour. Int. J. STD AIDS. 1999; 10(7): 442-7. https://dx.doi.org/10.1258/0956462991914438.
  26. Cauci S., Culhane J.F. High sialidase levels increase preterm birth risk among women who are bacterial vaginosis positive in early gestation. Am. J. Obstet. Gynecol. 2011; 204(2): 142.e1-142.e9. https://dx.doi.org/10.1016/j.ajog.2010.08.061.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bionika Media, 2022

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>