New approaches to studying the regulation of preimplantation embryonic development

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

Only 40% of embryos obtained in ART programs are known to develop to the blastocyst stage; the remaining embryos stop developing at different division stages. The genetic and epigenetic factors of both the very embryo itself and the oocyte, which play a key role in the early preimplantation embryonic development, are of great importance in the genesis of infertility.

This review discusses new approaches to studying the regulation of preimplantation embryo development, analyzes the impact of the genetic and epigenetic status of oocytes on the quality of obtained embryos and the rate of pregnancy. It gives the data of investigations in this area and promises of their use in clinical practice. On the strength of thee available data, the authors consider the possibility of overcoming severe infertility forms associated with a small number of obtained embryos and their poor quality; that of overcoming a condition, such as infertility of unclear genesis; they also discuss the possibility of searching for new methods for assessing the quality of oocytes and embryos to improve IVF programs. The review underlines the need for expanding and intensifying the investigations determining the epigenetic status of an embryo and the corresponding oocyte, those studying the processes of epigenetic regulation in the early embryo development.

The paper analyzes the data of researches in the epigenetic regulation of preimplantation embryonic development, characterizes the main epigenetic modifications affecting the quality of obtained oocytes and embryos, and identifies the possibility of clinical application of the available data.

Conclusion: At the present stage, the methods for assessing the quality of obtained embryos are based on morphological criteria. However, the morphological assessment grounded mainly on the visual determination of the degree of their competence does not correlate with the capability of embryos for implantation and development of high-quality pregnancy to a sufficient extent. In this connection, it is expedient to study the molecular genetic characteristics of embryos during the period of early embryonic development to devise clinical and pathogenetic methods to enhance the efficiency of infertility treatment in the IVF programs.

Толық мәтін

Рұқсат жабық

Авторлар туралы

Yana Martirosyan

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation

Хат алмасуға жауапты Автор.
Email: marti-yana@yandex.ru

PhD, gynecologist at F. Paulsen Scientific and Clinical Department

Ресей, Moscow

Tatiana Nazarenko

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation

Email: t_nazarenko@oparina4.ru

Professor, Dr. Med. Sci., Director of the Institute of Reproductive Medicine

Ресей, Moscow

Albina Kadaeva

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation

Email: albina.karimovai@mail.ru

clinical resident specializing in obstetrics and gynecology

Ресей, Moscow

Valeria Krasnova

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation

Email: lkrasnova27@mail.com

clinical resident at F. Paulsen Scientific and Clinical Department

Ресей, Moscow

Almina Biryukova

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation

Email: a_birukova@oparina4.ru

gynecologist at F. Paulsen Scientific and Clinical Department

Ресей, Moscow

Mariam Pogosyan

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation

Email: Mariam-pogosyan@yandex.ru

Ph.D. student, F. Paulsen Scientific and Clinical Department

Ресей, Moscow

Әдебиет тізімі

  1. Shenfield F., de Mouzon J., Scaravelli G., Kupka M., Ferraretti A.P., Prados F.J., Goossens V.; ESHRE Working Group on Oocyte Cryopreservation in Europe. Oocyte and ovarian tissue cryopreservation in European countries: statutory background, practice, storage and use. Hum. Reprod. Open. 2017; 2017(1): hox003. https://dx.doi.org/10.1093/hropen/hox003.
  2. Lemmen J.G., Rodríguez N.M., Andreasen L.D., Loft A., Zuebe S. The total pregnancy potential per oocyte aspiration after reproduction-in how many cycles are biologically competent oocytes available? J. Assist. Reprod. Genet. 2016; 33(7): 849-54. https://dx.doi.org/10.1007/s10815-016-0707-3.
  3. Wu X., Wang, P., Brown C., Zilinski C., Matzuk M. Zygote arrest 1 (Zar1) is an evolutionarily conserved gene expressed in vertebrate ovaries. Biol. Reprod. 2003; 69(3): 861-7. https://dx.doi.org/10.1095/biolreprod.103.016022.
  4. Feng R., Sang Q., Kuang Y., Sun X., Yan Z., Zhang S. et al. Mutations in TUBB8 and human oocyte meiotic arrest. N. Engl. J. Med. 2016; 374(3): 223-32. https://dx.doi.org/10.1056/NEJMoa1510791.
  5. Christou-Kent M. PATL2 is a key actor of oocyte maturation whose invalidation causes infertility in women and mice. EMBO Mol. Med. 2018; 10(5): e8515. https://dx.doi.org/10.15252/emmm.201708515.
  6. Niakan K.K., Han J., Pedersen R.A., Simon C., Pera R.A. Human pre-implantation embryo development. Development. 2012; 139(5): 829-41. https://dx.doi.org/10.1242/dev.060426.
  7. Jiao S.Y., Yang Y.H., Chen S.R. Molecular genetics of infertility: loss-of-function mutations in humans and corresponding knockout/mutated mice. Hum. Reprod. Update. 2021; 27(1): 154-89. https://dx.doi.org/10.1093/humupd/dmaa034.
  8. Sang Q., Zhang Z., Shi J., Sun X., Li B., Yan Z. et al. A pannexin 1 channelopathy causes human oocyte death. Sci. Transl. Med. 2019; 11(485): eaav8731. https://dx.doi.org/10.1126/scitranslmed.aav8731.
  9. Wassarman P.M., Litscher E.S. Influence of the zona pellucida of the mouse egg on folliculogenesis and fertility. Int. J. Dev. Biol. 2012; 56(10-12): 833‐9. https://dx.doi.org/10.1387/ijdb.120136pw.
  10. Rankin T., Dean J. The molecular genetics of the zona pellucida: mouse mutations and infertility. Mol. Hum. Reprod. 1996; 2(11): 889‐94. https://dx.doi.org/10.1093/molehr/2.11.889.
  11. Loeuillet C., Dhellemmes M., Cazin C., Kherraf Z.-E., Ben Mustapha S.F., Zouari R. et al. A recurrent ZP1 variant is responsible for oocyte maturation defect with degenerated oocytes in infertile females. Clin. Genet. 2022; 102(1): 22-9. https://dx.doi.org/10.1111/cge.14144.
  12. Gerris J., Royen Van E. Avoiding multiple pregnancies in ART: a plea for single embryo transfer. Hum. Reprod. 2000; 15(9): 184-8. https://dx.doi.org/10.1093/humrep/15.9.1884.
  13. Albertini D., Sanfins A., Combelles C. Origins and manifestations of oocyte maturation. Reprod. Biomed. Online. 2003; 6(4): 410-5. https://dx.doi.org/10.1016/s1472-6483(10)62159-1.
  14. Eichenlaub-Ritter U., Peschke M. Expression in in-vivo and in vitro growing and maturing oocytes: focus on regulation of expression at the translational level. Hum. Reprod. 2002; 8(1): 21-41. https://dx.doi.org/10.1093/humupd/ 8.1.21.
  15. Rienzi L., Ubaldi F., Martinez F., Lacobelli M., Minasi M.G., Ferrero S.J. et al. Relarionship between meiotic spindle location with regard to the polar body position and oocyte developmental potential after ICSI. Hum. Reprod. 2003; 18(6): 1289-93. https://dx.doi.org/10.1093/humrep/ deg 274.
  16. Verlinsky Y., Lerner S., Illkevitch N., Kuznetsov V., Kuznetsova I., Cueslak J., Kuliev A. Is there any predictive value of furst polar body morphology for embryo genotype or developmental potential? Reprod. Biomed. Online. 2003; 7(3): 336-41. https://dx.doi.org/10.1016/s1472-6483(10)61874-3.
  17. Zhou W., Fu L., Sha W., Chu D., Li Y. Relationship of polar bodies morphology to embryo quality and pregnancy outcome. Zygote. 2016. 24(3): 401-7. https://dx.doi.org/10.1017/S0967199415000325.
  18. Yuan P., Guo Q., Guo H., Lian Y., Zhai F., Yan Z. et al. The methylome of a human polar body reflects that of its sibling oocyte and its aberrance may indicate poor embryo development. Hum. Reprod. 2021; 36(2): 318-30. https://dx.doi.org/10.1093/humrep/deaa292.
  19. Eichenlaub-Ritter U., Schmiady H., Kentenich H., Soewarto D. Recurrent failure in polar body formation and premature chromosome condensation in oocytes from a human patient: indicators of asynchrony in nuclear and cytoplasmic maturation. Hum. Reprod. 1995; 10(9): 2343-9. https://dx.doi.org/10.1093/oxfordjournals.humrep.a136297.
  20. Choi T., Fukasawa K., Zhou R., Tessarollo L., Borror K., Resau J., Vande Woude G.F. The Mos/mitogen-activated protein kinase (MAPK) pathway regulates the size and degradation of the first polar body in maturing mouse oocytes. Proc. Natl. Acad. Sci. USA. 1996; 93(14): 7032-5. https://dx.doi.org/10.1073/pnas.93.14.7032.
  21. Ebner T., Yaman C., Moser M., Simmergruber M., Feichtinger O., Tews G. Prognostic value of Jouhilahti the first polar body morphology on fertilization rate and embryo quality in intracytoplasmic sperm injection. Hum. Reprod. 2000; 15(2): 427-30. https://dx.doi.org/10.1093/humrep/15.2.427.
  22. Ebner T., Moser M., Yaman C., Feichtinger O., Hartl J., Tews G. Elective transfer of embryos selected on the basis of first polar body morphology is associated woth increase rates of implantation and pregnancy. Ferlil. Steril. 1999; 72(4): 599-603. https://dx.doi.org/10.1016/s0015-0282(99)00315-5.
  23. Ebner T., Moser M., Simmergruber M., Yaman C., Pfleger U., Tews G. First polar body morphology and blastocyst formation rate in ICSI patients. Hum. Reprod. 2002; 17(9): 2415-8. https://dx.doi.org/10.1093/humrep/17.9.2415.
  24. Ciotti P.N., Notarangelo L., Morselli-Labate A.M., Felletti V., Porcu E., Venturoli S. First polar body morphology before ICSI is not related to embryo quality or pregnancy rate. Hum. Reprod. 2004; 19(10): 2334-9. https://dx.doi.org/10.1093/humrep/deh433.
  25. Yao J., Li M., Lin L., Li Y., Zhuang J., Huang Y. et al. PTEIN expression in human cumulus cells is associated with embryo development competence. Zygote. 2022; 30(5): 611-8. https://dx.doi.org/10.1017/ S096719942200003X.
  26. Abdallah K., Hunt S., Abdullah S., Mol B.W.J., Youssef M.A. How and why to define unexplained infertility? Semin. Reprod. Med. 2020; 38(1): 55-60. https://dx.doi.org/10.1055/s-0040-1718709.
  27. Yang Y., Shi L., Fu X., Ma G., Yang Z., Li Y. at al. Metabolic and epigenetic dysfunctions underlie the arrest of in vitro fertilized human embryos in a senescent-like state. PLoS Biol. 2022; 20(6): e3001682. https://dx.doi.org/10.1371/journal.pbio.3001682.
  28. Sfakianoudis K., Maziotis E., Karantzali E., Kokkini G., Grigoriadis S., Pantou A. et al. Molecular drivers of developmental arrest in the human preimplantation embruo: a systematic review and critical analysis leading to mapping future research. Int. J. Mol. Sci. 2021; 22(15): 8353. https://dx.doi.org/10.3390/ijms22158353.
  29. Maurer M., Ebner T., Puchner M., Mayer R.B., Shebl O., Oppelt P. et al. Chromosomal aneuploidies and early embryonic developmental arrest. In.t J. Fertil. Steril. 2015; 9(3): 346-53. https://dx.doi.org/10.22074/ ijfs.2015.4550.
  30. Jouhilahti E.-M., Madissoon E., Vesterlund L., Töhönen V., Krjutškov K., Plaza Reyes A. et al. The human PRD-like homeobox gene LEUTX has a central role in embryo genome activation. Development. 2016; 43(19): 3459-69. https://dx.doi.org/10.1242/dev.134510.
  31. De laco A., Planet E., Coluccio A., Verp S., Duc J., Trono D. DUX-family transcription factors regulate zygotic genome activation in placental mammals. Nat. Genet. 2017; 49(6): 941-5. https://dx.doi.org/10.1038/ ng.3858.
  32. Mantzouratou A., Delhanty J.D.A. Aneuploidy in the human cleavage stage embryo. Cytogenet. Genome Res. 2011; 133(2-4): 141-8. https://dx.doi.org/10.1159/000323794.
  33. McCoy R.C., Demko Z.P., Ryan A., Banjevic M., Hill M., Sigurjonsson S. et al. Evidence of selection against complex mitotic-origin aneuploidy during preimplantation development. PLoS Genet. 2015; 11(10): e1005601. https://dx.doi.org/10.1371/journal.pgen.1005601.
  34. Chavez S.L., Loewke K.E., Han J., Moussavi F., Colls P., Munne S. et al. Dynamic blastomere behaviour reflects human embryo ploidy by the four-cell stage. Nat. Commun. 2012; 3: 1251. https://dx.doi.org/10.1038/ ncomms2249.
  35. Mertzanidou A., Spits C., Nguyen H.T., Van de Velde H., Sermon K. Evolution of aneuploidy up to Say 4 of human preimplantation development Hum. Reprod. 2013; 8(6): 1716-24. https://dx.doi.org/10.1093/humrep/det079.
  36. Ottolini C.S., Rogers S., Sage K., Summers M.C., Capalbo A., Griffin D.K. et al. Karyomapping identifies second polar body DNA persisting to the blastocyst stage: implications for embryo biopsy. Reprod. Biomed. Online. 2015; 31(6): 776-82. https://dx.doi.org/10.1016/j.rbmo.2015.07.005.
  37. Tsuliko O., Jatsenko T., Grace P., Kurg A., Vermeesch J. A speculative outlook on embryonic aneuploidy: Can molecular pathways ne involved? Dev. Biol. 2019; 447(1): 3-13. https://dx.doi.org/10.1016/j.ydbio.2018.01.014.
  38. Vera-Rodriguez M., Chavez S., Ruvio C., Pera R., Simon C. Prediction model for aneuploidy in early human embryo development revealed by single-cell analysis. Nat. Commun. 2015; 6: 7601. https://dx.doi.org/10.1038/ ncomms8601.
  39. Acvedo N., Wang X., Dunn R., Smith G. Glycogen synthase kinase-3 regulation of chromatin segregation and cytokinesis in mouse preimplantation embryos. Mol. Reprod. Dev. 2007; 4(2):178-88. https://dx.doi.org/10.1002/ mrd.20495.
  40. Maekawa M., Yamamoto T., Kohno M., Takeichi M., Nishida E. Requirment gor ERK MAP kinase in mouse preimplantation development. Development. 2007; 134(15): 2751-9. https://dx.doi.org/10.1242/dev.003756.
  41. Barker D.J. The origins of the developmental origins theory. J. Intern. Med. 2007; 261(5): 412-7. https://dx.doi.org/10.1111/j.1365-2796.2007.01809.x.
  42. Feuer S., Rinaudo P. Preimplantation stress and development. Birth Defects Res. C Embryo Today. 2012; 96(4): 299-314. https://dx.doi.org/10.1002/ bdrc.21022.
  43. Greco E., Minasi M., Fiorentino F. Healthy babies after intrauterine transfer of mosaic aneuploid blastocysts. N. Engl. J. Med. 2015; 373(21): 2089-90. https://dx.doi.org/10.1056/NEJMc1500421.
  44. Bolton H., Graham S.J.L., Van der Aa N., Kumar P., Theunis K., Fernandez Gallardo E. et al. Mouse model of chromosome mosaicism reveals lineage-specific depletion of aneuploid cells and normal developmental potential. Nat. Commun. 2016; 7: 11165. https://dx.doi.org/10.1038/ ncomms11165.
  45. Eckersley-Maslin M.A., Alda-Catalinas C., Reik W. Dynamics of the epigenetic landscape during the maternal-to-zygotic transition. Nat. Rev. Mol. Cell Biol. 2018; 19(7): 436-50. https://dx.doi.org/10.1038/s41580-018-0008-z.
  46. Wong C.C., Loewke K.E., Bossert N.L., Behr B., De Jonge C.J., Baer T.M., Reijo Pera R.A. Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nat. Biotechnol. 2010; 28(10): 1115-21. https://dx.doi.org/10.1038/ nbt.1686.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bionika Media, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>