Characteristics of the embryological stage of infertility treatment using assisted reproductive technologies depending on the total antioxidant capacity of native ejaculate


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Objective: Ta investigate the impact af ejaculate total antiaxidant capacity af the ejaculate an fertilization and embrya develapment in cauples with different types af infertility and determine the value af the tatal antiaxidant capacity as a biomarker far predicting the outcomes af assisted reproductive technology (ART). Materials and methods: The study included 50 infertile cauples wha underwent in vitra fertilizatian using intracytaplasmic sperm injection (ICSI). On the day af transvaginalpunctures, native ejaculate was collected from their spouses ta test far total antiaxidant capacity using the FORM 3000 device using the FORD kit. Results: Embryos obtained with sperm from the ejaculate with higher total antiaxidant capacity reached the late blastocyst stage an day 5. Embryos obtained with sperm from the ejaculate with lower total antiaxidant capacity by day 5 developed ta morulae ar early blastocyst stage (p=0.03). There was a negative correlation between the total antiaxidant capacity af the ejaculate and the percentage af fertilized oocytes. No correlation was found between total antiaxidant capacity and ART outcomes in couples with different types af infertility. Conclusion: Total ejaculate antiaxidant capacity af native ejaculate before in vitro fertilization affects the characteristics af the embryalagical stage af ART. A high level af oxidative stress was significantly associated with a decrease in the fertilization rate. At the same time, the pregnancy rate was not associated with the level af oxidative stress in male germ cells. Careful pre-pregnancy care and conscious parenting are necessary ta improve the effectiveness af ART in men with high levels af oxidative stress in the ejaculate through an increase in the number af zygates.

Texto integral

Acesso é fechado

Sobre autores

Diana Agadzhanyan

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

MD, Postgraduate Student, BV. Leonov Department of Assisted Technologies for the Treatment of Infertility

Natalia Lobanova

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: n_lobanova@oparina4.ru
Junior Researcher, BV. Leonov Department of Assisted Technologies for the Treatment of Infertility

Veronika Smolnikova

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: v_smolnikova@oparina4.ru
Dr. Med. Sci., Associate Professor, Leading Researcher, Department of IVF named after Professor BV. Leonov

Natalya Makarova

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: np_makarova@oparina4.ru
Dr. Bio. Sci., Leading Researcher, Department of IVF named after Professor BV. Leonov

Aleksey Krasnyi

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: alexred@list.ru
PhD (Bio), Head of the Laboratory of Cytogy

Valeriya Shchipitsyna

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Junior Researcher at the Laboratory of Cytogy

Alsu Sadekova

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: sialsad@gmail.com
PhD (Bio), Researcher at the Laboratory of Cytogy

Diana Kokoeva

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: d_kokoeva@oparina4.ru
PhD, Junior Researcher at the Laboratory of Cytogy

Elena Kalinina

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: e_kalinina@oparina4.ru
Dr. Med. Sci., Professor, Head of the BV. Leonov Department of Assisted Technologies for the Treatment of Infertility

Bibliografia

  1. Carson S.A., Kallen A.N. Diagnosis and management of infertility: a review. 2021; 326(1): 65-76. https://dx.doi.org/10.1001/jama.2021.4788.
  2. Сыркашева А.Г., Коротченко О.Е. Окислительный стресс. Антиоксидантная терапия при прегравидарной подготовке и/или при бесплодии. Медицинский совет. 2017; 13: 150-56. [Syrkasheva A.G., Korotchenko O.E. Oxidizing stress antioxidant therapy in pregravidar training and/or infertility Meditsinskiy sovet/Medical Council. 2017; 13: 150-6 (in Russian)]. https://dx.doi.org/10.21518/2079-701X-2017-13-150-156.
  3. Adeoye O., Olawumi J., Opeyemi A., Christiania O. Review on the role of glutathione on oxidative stress and infertility JBRA Assist. Reprod. 2018; 22(1): 61-6. https://dx.doi.org/10.5935/1518-0557.20180003.
  4. Barati E., Nikzad H., Karimian M. Oxidative stress and male infertility: current knowledge of pathophysiology and role of antioxidant therapy in disease management. Cell. Mol. Life Sci. 2020; 77(1): 93-113. https://dx.doi.org/10.1007/s00018-019-03253-8.
  5. Agarwal A., Baskaran S., Parekh N., Cho C.L., Henkel R., Vij S. et al. Male infertility. Lancet. 2021; 397(10271): 319-33. https://dx.doi/org/10.1016/S0140-6736(20)32667-2.
  6. Martins A.D., Agarwal A. Oxidation reduction potential: a new biomarker of male infertility. Panminerva Med. 2019; 61(2): 108-17. https://dx.doi.org/10.23736/S0031-0808.18.03529-2.
  7. Смольникова В.Ю., Агаджанян Д.С., Красный А.М. Активные формы кислорода и компоненты системы антиоксидантной защиты как маркеры прогнозирования качества эмбрионов у супружеских пар с различными типами бесплодия. Акушерство и гинекология. 2020; 11: 55-60. https://dx.doi.org/10.18565/aig.2020.11.55-60.
  8. Божедомов В.А., Ушакова И.В., Липатова Н.А., Спориш Е.А. Роль гиперпродукции активных форм кислорода в мужском бесплодии и возможности антиоксидантной терапии. Consilium Medicum. 2012; 14(7): 51-5.
  9. Agarwal A., Rana M., Qiu E., AlBunni H., Bui AD., Henkel R. Role of oxidative stress, infection and inflammation in male infertility. Andrologia. 2018; 50(11): e13126. https://dx.doi.org/10.1111/and.13126.
  10. Drevet J.R., Hallak J., Nasr-Esfahani M.H., Aitken R.J. Reactive oxygen species and their consequences on the structure and function of mammalian spermatozoa. Antioxid. Redox Signal. 2022 Mar 7. https://dx.doi.org/10.1089/ars.2021.0235.
  11. Tosic J., Walton A. Formation of hydrogen peroxide by spermatozoa and its inhibitory effect of respiration. Nature. 1946; 158: 485. https://dx.doi.org/10.1038/158485a0.
  12. Walczak-Jedrzejowska R., Wolski J.K., Slowikowska-Hilczer J. The role of oxidative stress and antioxidants in male fertility. Cent. European J. Urol. 2013; 66(1): 60-7. https://dx.doi.org/10.5173/ceju.2013.01.art19.
  13. Oborna I., Fingerova H., Novotny J., Brezinova J., Svobodova M., Aziz N. Reactive oxygen species in human semen in relation to leukocyte contamination. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Repub. 2009; 153(1): 53-8. https://dx.doi.org/10.5507/bp.2009.009.
  14. Gharagozloo P., Gutierrez-Addn A., Champroux A., Noblanc A., Kocer A., Calle A. et al. A novel antioxidant formulation designed to treat male infertility associated with oxidative stress: promising preclinical evidence from animal models. Hum. Reprod. 2016; 31(2): 252-62. https://dx.doi.org/10.1093/humrep/dev302.
  15. Dorostghoal M., Kazeminejad S.R., Shahbazian N., Pourmehdi M., Jabbari A. Oxidative stress status and sperm DNA fragmentation in fertile and infertile men. Andrologia. 2017; 49(10). https://dx.doi.org/10.1111/and.12762.
  16. Евдокимов В.В., Жуков О.Б., Кастрикин Ю.В., Байжуманов А.А., Туровецкий В.Б., Пирутин С.К. Оксидативный стресс и патозооспермия. Андрология и генитальная хирургия. 2017; 18(2): 2432. https://dx.doi.org/10.17650/2070-9781-2017-18-2-27-32.
  17. Asadi N., Bahmani M., Kheradmand A., Rafieian-Kopaei M. The impact of oxidative stress on testicular function and the role of antioxidants in improving it: a review. J. Clin. Diagn. Res. 2017; 11(5): IE01-IE05. https://dx.doi.org/10.7860/JCDR/2017/23927.9886.
  18. Pisoschi A.M., Pop A. The role of antioxidants in the chemistry of oxidative stress: a review. Eur. J. Med. Chem. 2015; 97: 55-74. https://dx.doi.org/10.1016/j.ejmech.2015.04.040.
  19. Гамидов С.И., Шатылко Т.В., Ли К.И., Гасанов Н.Г. Роль антиоксидантных молекул в терапии мужского бесплодия и подготовке мужчины к зачатию ребенка. Медицинский совет. 2020; 3: 122-9. https://dx.doi.org/10.21518/2079-701X-2020-3-122-129.
  20. Gupta S., Finelli R., Agarwal A., Henkel R. Total antioxidant capacity-relevance, methods and clinical implications. Andrologia. 2021; 53(2): e13624. https://dx.doi.org/10.1111/and.13624.
  21. Subramanian V., Ravichandran A., Thiagarajan N., Govindarajan M., Dhandayuthapani S., Suresh S. Seminal reactive oxygen species and total antioxidant capacity: Correlations with sperm parameters and impact on male infertility. Clin. Exp. Reprod. Med. 2018; 45(2): 88-93. https://dx.doi.org/10.5653/cerm.2018.45.2.88.
  22. Макарова Н.П., Романов А.Ю., Долгушина Н.В., Паркер М.М., Красный А.М. Сравнительный анализ экспрессии генов глутатионпероксидазы и глутатионредуктазы в сперматозоидах человека при криоконсервации. Клеточные технологии в биологии и медицине. 2018; 1: 58-62.
  23. Chen S.S., Chang L.S., Wei Y.H. Oxidative damage to proteins and decrease of antioxidant capacity in patients with varicocele. Free Radic. Biol. Med. 2001; 30(11): 1328-34. https://dx.doi.org/10.1016/s0891-5849(01)00536-6.
  24. Приказ Министерства здравоохранения РФ от 31 июля 2020 г. N. 803н "О порядке использования вспомогательных репродуктивных технологий, противопоказаниях и ограничениях к их применению"
  25. World Health Organization. WHO laboratory manual for the examination and processing of human semen. 5th ed. WHO; 2010.
  26. Gam an M.A., Epingeac M.E., Diaconu C.C., Gam an A.M. Evaluation of oxidative stress levels in obesity and diabetes by the free oxygen radical test and free oxygen radical defence assays and correlations with anthropometric and laboratory parameters. World J. Diabetes. 2020; 11(5): 193-201. https://dx.doi.org/10.4239/wjd.v11.i5.193.
  27. Cannarella R., Crafa A., Barbagallo F., Mongioi L.M., Condorelli R.A., Aversa A. et al. Seminal plasma proteomic biomarkers of oxidative stress. Int. J. Mol. Sci. 2020; 21(23): 9113. https://dx.doi.org/10.3390/ijms21239113.
  28. Ahmadi S., Bashiri R., Ghadiri-Anari A., Nadjarzadeh A. Antioxidant supplements and semen parameters: An evidence based review. Int. J. Reprod. Biomed. 2016; 14(2): 729-36.
  29. Vorobets M.Z., Melnyk O.V., Kovalenko I.V., Fafula R.V., Borzhievsky A.T., Vorobets Z.D. Сondition of urogenital tract microbiotes and pro-and antioxidant system in male azoospermia. Regul. Mech. Biosyst. 2021; 12(4): 696-701
  30. Sharma R.K., Pasqualotto F.F., Nelson D.R., Thomas A.J. Jr, Agarwal A. The reactive oxygen species - total antioxidant capacity score is a new measure of oxidative stress to predict male infertility. Hum. Reprod. 1999; 14(11): 2801-7. https://dx.doi.org/10.1093/humrep/14.11.2801.
  31. Mahfouz R., Sharma R., Sharma D., Sabanegh E., Agarwal A. Diagnostic value of the total antioxidant capacity (TAC) in human seminal plasma. Fertil. Steril. 2009; 91(3): 805-11. https://dx.doi.org/10.1016/j.fertnstert.2008.01.022.
  32. Domoslawska A., Zdunczyk S., Franczyk M., Kankofer M., Janowski T. Total antioxidant capacity and protein peroxidation intensity in seminal plasma of infertile and fertile dogs. Reprod. Domest. Anim. 2019; 54(2): 252-7. https://dx.doi.org/10.1111/rda.13345.
  33. Brady S.A. Мужское бесплодие и окислительный стресс: роль диеты, образа жизни и пищевых добавок. Андрология и генитальная хирургия. 2014; 15(3): 33-41. https://dx.doi.org/10.17650/2070-9781-2014-3-33-41.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bionika Media, 2022

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies