Characteristics of circadian regulation in patients with miscarriage

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The article presents the analysis of circadian regulation disorders contributing to miscarriage and complicating the course of pregnancy. The circadian system of the body provides regulation of the neuroendocrine-immune (NEIM) system, dynamic balance and the process of adaptation of the female body to the developing pregnancy, and fetal growth. The autonomous circadian regulation is formed in the fetus/embryo under the influence of endogenous and exogenous signals that carry information through the placenta during normal pregnancy. The transcription factor genes CLOCK/BMAL1, the light period genes Period 1-3/Cryptochrome 1-2 and their protein products play an important role in the process of circadian regulation. Mutations in genes regulating and controlling the “clock” are accompanied in experiment and clinic by the development of pathologic conditions followed by disruption of estrous cycles, failure of embryo implantation, and increased risk of miscarriage. Dysregulation of non-circadian functions of the clock genes leads to systemic endothelial dysfunction and epigenetic disorders. The disorders of circadian rhythms called desynchronoses appear when the effects of stereotypical internal (deficit and displacement of the sleeping period, typical pathological processes) and/or external (change of work schedule and time zone) environmental factors are altered.

Conclusion: Newly developed or existing disorders in the circadian organization of the maternal body may modulate a number of pathogenetic mechanisms in case of miscarriage: neurogenic, endocrine, immune, and vascular; therefore, a detailed study of the mechanisms of adaptation and integration of rhythms in the emerging multifunctional system “mother-placenta-fetus” is extremely important in obstetric practice.

Texto integral

Acesso é fechado

Sobre autores

Madina Baroeva

Institute of Biomedical Research, Vladikavkaz Scientific Center of the Russian Academy of Sciences; North Ossetian State Medical Academy, Ministry of Health of Russia

Autor responsável pela correspondência
Email: vip.baroeva@mail.ru
ORCID ID: 0000-0003-3978-743X

Junior Researcher at the Laboratory of Reproductology and Gestational Pathology, Institute of Biomedical Research – branch of the Vladikavkaz Scientific Center of the Russian Academy of Sciences; PhD student at the Department of Obstetrics and Gynecology No. 1, North Ossetian State Medical Academy, Ministry of Health of the Russian Federation

Rússia, Vladikavkaz; Vladikavkaz

Fatima Datieva

Institute of Biomedical Research, Vladikavkaz Scientific Center of the Russian Academy of Sciences

Email: faaroo@mail.ru
ORCID ID: 0000-0002-1636-9174

Dr. Med. Sci., Director

Rússia, Vladikavkaz

Larisa Popova

Institute of Biomedical Research, Vladikavkaz Scientific Center of the Russian Academy of Sciences; North Ossetian State Medical Academy, Ministry of Health of Russia

Email: larisa_s_popova@mail.ru
ORCID ID: 0000-0003-3546-4385

PhD, Associate Professor at the Department of Obstetrics and Gynecology No. 1, North Ossetian State Medical Academy, Ministry of Health of the Russian Federation; Senior Researcher, Institute of Biomedical Research – branch of the Vladikavkaz Scientific Center of the Russian Academy of Sciences

Rússia, Vladikavkaz; Vladikavkaz

Larisa Tsallagova

Institute of Biomedical Research, Vladikavkaz Scientific Center of the Russian Academy of Sciences; North Ossetian State Medical Academy, Ministry of Health of Russia

Email: akusherstvo_1@mail.ru
ORCID ID: 0000-0003-0514-3038

Dr. Med. Sci., Professor at the Department of Obstetrics and Gynecology No. 1, North Ossetian State Medical Academy, Ministry of Health of the Russian Federation; Head of the Laboratory of Reproductology and Gestational Pathology, Institute of Biomedical Research – branch of the Vladikavkaz Scientific Center of the Russian Academy of Sciences, 362027, Russia, Vladikavkaz

Rússia, Vladikavkaz; Vladikavkaz

Bibliografia

  1. Панкова О.Ю. Невынашивание беременности. М.: БИНОМ; 2016. 192 с. [Pankova O.Yu. Miscarriage of pregnancy. Moscow: BINOM; 2016. 192 p. (in Russian)].
  2. Радзинский В.Е. Привычное невынашивание беременности: причины, версии и контраверсии, лечение. М.: ГЭОТАР-Медиа; 2017. 592 с. [Radzinsky V.E. Habitual miscarriage: causes, versions and contraversions, treatment. M.: GEOTAR-Media; 2017. 592 p. (in Russian)].
  3. Azova M.M., Ahmed A.A., Ait Aissa A., Blagonravov M.L. Association of DNMT3B and DNMN3L gene polymorphisms with early pregnancy loss. Bull. Exp. Biol. Med. 2019; 167(4): 475-8. https://dx.doi.org/10.1007/ s10517-019-04553-6.
  4. Сидельникова В.М., Сухих Г.Т. Невынашивание беременности. М.; МИА; 2010. 536с. [Sidelnikova V.M., Suhikh G.T. Miscarriage. Moscow: MIA; 2010. 536p. (in Russian)].
  5. Малышкина А.И., Назарова А.О., Батрак Н.В., Жолобов Ю.Н., Козырина А.А., Кулиева Е.Ю., Назаров С.Б. Медико-социальная характеристика пациенток с привычным невынашиванием беременности. Российский вестник акушера-гинеколога. 2014; 14(6): 43-8. [MalyshkinaA.I., Nazarova A.O., Batrak N.V., Zholobov Iu.N., Kozyrina A.A., Kulieva E.Iu., Nazarov S.B. Sociomedical characteristics of patients with recurrent miscarriage. Russian Bulletin of Obstetrician-Gynecologist. 2014; 14(6): 43-8. (in Russian)].
  6. Доброхотова Ю.Э., Луценко Н.Н., Зимина О.А. Невынашивание беременности. Роль генов репарации ДНК. Акушерство и гинекология. 2015; 9: 5-13. [Dobrokhotova Yu.E., Lutsenko N.N., Zimina O.A. Miscarriage: Role of DNA repair genes. Obstetrics and Gynecology. 2015; (9): 5-13. (in Russian)].
  7. Савельева Г.М., Аксененко В.А., Андреева М.Д., Базина М.И., Башмакова Н.В., Боровкова Л.В., Брюхина Е.В., Буштырева И.О., Волков В.Г., Гурьев Д.Л., Данькова И.В., Доброхотова Ю.Э., Егорова А.Т., Иванова Т.В., Константинова О.Д., Коротких И.Н., Кравченко Е.Н., Крамарский В.А., Кулешов В.М., Лебеденко Е.Ю., Мальцева Л.И., Манухин И.Б., Мартиросян С.В., Михельсон А.Ф., Олина А.А., Пашов А.И., Рогожина Е.И., Сахаутдинова И.В., Селихова М.С., Серова О.Ф., Синчихин С.П., Сичинава Л.Г., Тапильская Н.И., Цхай В.Б., Ярмолинская М.И. Исходы второй половины беременности у пациенток с привычным выкидышем в анамнезе (результаты многоцентрового исследования ТРИСТАН-2). Акушерство и гинекология. 2018; 8: 111-21. [Saveleva G.M., Aksenenko V.A., Andreeva M.D., Bazina M.I., Bashmakova N.V., Borovkova I.V., Bryuhina E.V., Bushtyireva I.O., Volkov V.G., Gurev D.L., Dankova I.V., Dobrohotova Yu.E., Egorova A.T., Ivanova T.V., Konstantinova O.D., Korotkih I.N., Kravchenko E.N., Kramarskiy V.A., Kuleshov V.M., Lebedenko E.Yu., Maltseva L.I., Manuhin I.B., Martirosyan S.V., Mihelson A.F., Olina A.A., Pashov A.I., Rogozhina I.E., Sahautdinova I.V., Selihova M.S., Serova O.F., Sinchihin S.P., Sichinava L.G., Tapilskaya N.I., Tshay V.B., Yarmolinskaya M.I. Outcomes of the second half of pregnancy in patients with recurrent pregnancy loss (results of multicenter study of TRISTAN-2). Obstetrics and Gynecology. 2018; (8): 111-21. (in Russian)]. https://dx.doi.org/10.18565/aig.2018.8.111-121.
  8. Батрак Н.В., Малышкина А.И. Факторы риска привычного невынашивания беременности. Вестник Ивановской медицинской академии. 2016; 21(4): 37-41. [Batrak N.V., Malyshkina A.I. Risk factors for habitual incomplete pregnancy. Bulletin of Ivanovo Medical Academy. 2016; 21(4): 37-41. (in Russian)].
  9. Трифонова Е.А., Ганьжа О.А., Габидулина Т.В., Девятьярова Л.Л., Сотникова Л.С., Степанов В.А. Генетические факторы в развитии привычного невынашивания беременности: обзор данных метаанализов. Акушерство и гинекология. 2017; 4: 14-20. [Trifonova E.A., Ganzha O.A., Gabidulina T.V., Devyatyarova L.L., Sotnikova L.S., Stepanov V.A. Genetic factors in the development of recurrent miscarriage: An overview of the data of meta-analyses. Obstetrics and Gynecology. 2017; (4): 14-20. (in Russian)]. https://dx.doi.org/10.18565/aig.2017.4.14-20.
  10. Евсюкова И.И. Циркадный ритм матери и его значение для здоровья потомства. Журнал акушерства и женских болезней. 2022; 71(4): 95-105. [Evsyukova I.I. Maternal circadian rhythm and its implications for offspring health. Journal of Obstetrics and Women’s Diseases. 2022; 71(4): 95-105. (in Russian)]. https://dx.doi.org/10.17816/ JOWD108049.
  11. Евсюкова И.И. Роль мелатонина в пренатальном онтогенезе. Журнал эволюционной биохимии и физиологии. 2021; 57(1): 33-43. [Evsyukova I.I. The role of melatonin in prenatal ontogenesis. Journal of Evolutionary Biochemistry and Physiology. 2021; 57(1): 33-43. (in Russian)]. https://dx.doi.org/10.31857/S0044452921010022.
  12. Mills J., Kuohung W. Impact of circadian rhythms on female reproduction and infertility treatment success. Curr. Opin. Endocrinol. Diabetes Obes. 2019; 26(6): 317-21. https://dx.doi.org/10.1097/MED.0000000000000511.
  13. Менжинская И.В., Ионанидзе Т.Б., Ванько Л.В., Тетруашвили Н.К., Кречетова Л.В. Аутоантитела как факторы риска угрожающего выкидыша у женщин с ранними потерями беременности. Акушерство и гинекология. 2021; 8: 94-101. [Menzhinskaya I.V., Ionanidze T.B., Van’ko L.V., Tetruashvili N.K., Krechetova L.V. Autoantibodies as risk factors for threatened miscarriage in women with early pregnancy loss. Obstetrics and Gynecology. 2021; (8): 94-101. (in Russian)]. https://dx.doi.org/10.18565/ aig.2021.8.94-101.
  14. Begtrup L.M., Specht I.O., Hammer P.E.C., Flachs E.M., Garde A.H., Hansen J. et al. Night work and miscarriage: a Danish nationwide register-based cohort study. Occup. Environ. Med. 2019; 76(5): 302-8. https://dx.doi.org/10.1136/oemed-2018-105592.
  15. Suzumori N., Ebara T., Matsuki T., Yamada Y., Kato S., Omori T. et al.; Japan Environment & Children’s Study Group. Effects of long working hours and shift work during pregnancy on obstetric and perinatal outcomes: A large prospective cohort study-Japan Environment and Children's Study. Birth. 2020; 47(1): 67-79. https://dx.doi.org/10.1111/birt.12463.
  16. Соловьева А.В., Герасимова О.П., Ермоленко К.С., Геворгян Д.А. Состояние биоценоза у беременных женщин с привычным невынашиванием в анамнезе. Акушерство и гинекология. 2018; 10: 106-11. [Solovyeva A.V., Gerasimova O.P., Ermolenko K.S., Gevorgyan D.A. The status of biocenosis in pregnant women with a history of recurrent miscarriage. Obstetrics and Gynecology. 2018; (10): 106-11. (in Russian)]. https://dx.doi.org/10.18565/aig.2018.10.106-111.
  17. Liu C., Politch J.A., Cullerton E., Go K., Pang S., Kuohung W. Impact of daylight savings time on spontaneous pregnancy loss in in vitro fertilization patients. Chronobiol. Int. 2017; 34(5): 571-7. https://dx.doi.org/10.1080/ 07420528.2017.1279173.
  18. Досова С.Ю., Стольникова И.И. Психологические особенности женщин с привычным невынашиванием беременности. Акушерство и гинекология. 2020; 4 (Приложение): 80-1. [Dosova S.Yu., Stolnikova I.I. Psychological characteristics of women with habitual miscarriage. Obstetrics and Gynecology. 2020; (4, Suppl): 80-1. (in Russian)].
  19. Astiz M., Oster H. Feto-maternal crosstalk in the development of the circadian clock system. Front. Neurosci. 2021; 14: 631687. https://dx.doi.org/10.3389/fnins.2020.631687.
  20. Roenneberg T., Merrow M. The circadian clock and human health. Curr. Biol. 2016; 26(10): R432-43. https://dx.doi.org/10.1016/j.cub.2016.04.011.
  21. Papacleovoulou G., Nikolova V., Oduwole O., Chambers J., Vazquez-Lopez M., Jansen E. et al. Gestational disruptions in metabolic rhythmicity of the liver, muscle, and placenta affect fetal size. FASEB J. 2017; 31(4): 1698-708. https://dx.doi.org/10.1096/fj.201601032R.
  22. Ордиянц И.М., Барабашева С.С. Неразвивающаяся беременность: взгляд на проблему. Акушерство и гинекология: новости, мнения, обучение. 2018; 6(3): 92-6. [Ordiyants I.M., Barabasheva S.S. Non-developing pregnancy: view of the problem. Obstetrics and Gynecology: News, Opinions, Training. 2018; 6(3): 92-6. (in Russian)]. https://dx.doi.org/10.24411/ 2303-9698-2018-13010.
  23. Kvetnoy I., Ivanov D., Mironova E., Evsyukova I., Nasyrov R., Kvetnaia T. et al. Melatonin as the cornerstone of neuroimmunoendocrinology. Int. J. Mol. Sci. 2022; 23(3): 1835. https://dx.doi.org/10.3390/ijms23031835.
  24. Buijs F.N., Leon-Mercado L., Guzman-Ruiz M., Guerrero-Vargas N.N., Romo-Nava F., Buijs R.M. The circadian system: a regulatory feedback network of periphery and brain. Physiology. 2016; 31(3): 170-81. https://dx.doi.org/ 10.1152/physiol.00037.2015.
  25. Чернышева М.П. Временная структура биосистем и биологическое время. СПб.; 2016. 218с. [Chernysheva M.P. Temporal structure of biosystems and biological time. St. Petersburg; 2016. 218p. (in Russian)].
  26. Андреева Е.Н., Григорян О.Р., Шереметьева Е.В., Абсатарова Ю.С., Фурсенко В.А. Нарушение циркадных ритмов - фактор риска развития ожирения и хронической ановуляции у женщин репродуктивного возраста. Проблемы репродукции. 2020; 26(5): 36-42. [Andreeva E.N., Grigoryan O.R., Sheremetyeva E.V., Absatarova Yu.S., Fursenko V.A. Circadian rhythm disturbance is a risk factor for obesity and chronic anovulation in women of reproductive age. Russian Journal of Human Reproduction. 2020; 26(5): 36-42. (in Russian)]. https://dx.doi.org/10.17116/ repro20202605136.
  27. Green C.B. Circadian posttranscriptional regulatory mechanisms in mammals. Cold Spring Harb. Perspect. Biol. 2018; 10(6): a030692. https:// dx.doi.org/10.1101/cshperspect.a030692.
  28. Muter J., Lucas E.S., Chan Y.W., Brighton P.J., Moore J.D., Lacey L. et al. The clock protein period 2 synchronizes mitotic expansion and decidual transformation of human endometrial stromal cells. FASEB J. 2015; 29(4): 1603-14. https://dx.doi.org/10.1096/fj.14-267195.
  29. Ratajczak C.K., Herzog E.D., Muglia L.J. Clock gene expression in gravid uterus and extra-embryonic tissues during late gestation in the mouse. Reprod. Fertil. Dev. 2010; 22(5): 743-50. https://dx.doi.org/10.1071/RD09243.
  30. Cui L., Jin X., Xu F., Wang S., Liu L., Li X. et al. Circadian rhythm-associated Rev-erbα modulates polarization of decidual macrophage via the PI3K/Akt signaling pathway. Am. J. Reprod. Immunol. 2021; 86(3): e13436. https://dx.doi.org/10.1111/aji.13436.
  31. Посисеева Л.В. Неразвивающаяся беременность в анамнезе супружеской пары: факторы риска и реабилитация. Акушерство и гинекология. 2022; 10: 170-6. [Posiseeva L.V. Non-developing pregnancy in the history of a married couple: risk factors and rehabilitation. Obstetrics and Gynecology. 2022; (10): 170-6. (in Russian)]. https://dx.doi.org/10.18565/aig.2022.10.170-176.
  32. Nakamura Y., Tamura H., Kashida S., Takayama H., Yamagata Y., Karube A. et al. Changes of serum melatonin level and its relationship to feto-placental unit during pregnancy. J. Pineal. Res. 2001; 30(1): 29-33. https:// dx.doi.org/10.1034/j.1600-079x.2001.300104.x.
  33. Moisiadis V.G., Matthews S.G. Glucocorticoids and fetal programming part 1: Outcomes. Nat. Rev. Endocrinol. 2014; 10(7): 391-402. https:// dx.doi.org/10.1038/nrendo.2014.73.
  34. Mirmiran M., Maas Y.G., Ariagno R.L. Development of fetal and neonatal sleep and circadian rhythms. Sleep Med. Rev. 2003; 7(4): 321-34. https:// dx.doi.org/10.1053/smrv.2002.0243.
  35. Arendt J., Skene D.J. Melatonin as chronobiotic. Sleep Med. Rev. 2005; 9(1): 25-39. https://dx.doi.org/10.1016/j.smrv.2004.05.002.
  36. Mori M., Bogdan A., Balassa T., Csabai T., Szekeres-Bartho J. The decidua-the maternal bed embracing the embryo-maintains the pregnancy. Semin. Immunopathol. 2016; 38(6): 635-49. https://dx.doi.org/10.1007/ s00281-016-0574-0.
  37. Ono M., Ando H., Daikoku T., Fujiwara T., Mieda M., Mizumoto Y. et al. The circadian clock, nutritional signals and reproduction: a close relationship. Int. J. Mol. Sci. 2023; 24(2): 1545. https://dx.doi.org/10.3390/ijms24021545.
  38. Kovanen L., Saarikoski S.T., Aromaa A., Lonnqvist J., Partonen T. ARNTL (BMAL1) and NPAS2 gene variants contribute to fertility and seasonality. PLoS One. 2010; 5(4): e10007. https://dx.doi.org/10.1371/journal.pone.0010007.
  39. Hodžić A., Lavtar P., Ristanović M., Novaković I., Dotlić J., Peterlin B. Genetic variation in the CLOCK gene is associated with idiopathic recurrent spontaneous abortion. PLoS One. 2018; 13(5): e0196345. https://dx.doi.org/10.1371/ journal.pone.0196345.
  40. Seo B.N., Ryu J.M., Yun S.P., Jeon J.H., Park S.S., Oh K.B. et al. Delphinidin prevents hypoxia-induced mouse embryonic stem cell apoptosis through reduction of intracellular reactive oxygen species-mediated activation of JNK and NF-kappaB, and Akt inhibition. Apoptosis. 2013; 18(7): 811-24. https://dx.doi.org/10.1007/s10495-013-0838-2.
  41. Святова Г.С., Березина Г.М., Муртазалиева А.В. Ассоциация полиморфизма 657T>C гена хромосомной сегрегации SYCP3 с идиопатической формой привычного невынашивания беременности в казахской популяции. Акушерство и гинекология. 2019; 12: 105-10. [Svyatova G.S., Berezina G.M., Murtazalieva A.V. Association between the 657t>c polymorphism of the chromosome segregation gene SYCP3 and idiopathic recurrent pregnancy loss in the Kazakh population. Obstetrics and Gynecology. 2019; (12): 105-10. (in Russian)]. https://dx.doi.org/10.18565/aig.2019.12.105-110.
  42. Калдыбекова А.К., Аширбекова А.М., Алимбекова А., Бегалиева Д., Жаксылыкова А.А. Невынашивание беременности. Молодой ученый. 2016; 8(112): 394-6. [Kaldybekova A.K., Ashirbekova A.M., Alimbekova A., Begalieva D., Zhaksylykova A.A. Miscarriage. Young Scientist. 2016; 8(112): 394-6. (in Russian)].
  43. Lv S., Wang N., Ma J., Li W.P., Chen Z.J., Zhang C. Impaired decidualization caused by downregulation of circadian clock gene BMAL1 contributes to human recurrent miscarriage. Biol. Reprod. 2019; 101(1): 138-47. https:// dx.doi.org/10.1093/biolre/ioz063.
  44. Qiu C., Gelaye B., Denis M., Tadesse M.G., Enquobahrie D.A., Ananth C.V. et al. Placental genetic variations in circadian clock-related genes increase the risk of placental abruption. Int. J. Mol. Epidemiol. Genet. 2016; 7(1): 32-40.
  45. Houser B.L. Decidual macrophages and their roles at the maternal-fetal interface. Yale J. Biol. Med. 2012; 85(1): 105-18.
  46. Jena M.K., Nayak N., Chen K., Nayak N.R. Role of macrophages in pregnancy and related complications. Arch. Immunol. Ther. Exp. (Warsz). 2019; 67(5): 295-309. https://dx.doi.org/10.1007/s00005-019-00552-7.
  47. Гаджиева А.М., Эседова А.Э., Уруджева Н.Г., Идрисова М.А., Газимагомедов Г.А., Магомедова Т.С. Невынашивание беременности (спонтанные прерывания и неразвивающиеся беременности) на фоне морфофункциональной недостаточности эндометрия. Акушерство и гинекология. 2020; 4 (Приложение): 42-4. [Gadzhieva A.M., Esedova A.E., Urudzheva N.G., Idrisova M.A., Gazimagomedov G.A., Magomedova T.S. Miscarriage (spontaneous abortions and non-developing pregnancies) against the background of morphofunctional endometrial insufficiency. Obstetrics and Gynecology. 2020; (4, Suppl): 42-4. (in Russian)].
  48. Атьков О.Ю., Горохова С.Г. Циркадные гены и система кровообращения. Кардиологический вестник. 2019; 14(2): 36-42. [Atkov O.Yu., Gorokhova S.G. Circadian genes and circulatory system. Russian Cardiology Bulletin. 2019; 14(2): 36-42. (in Russian)]. https://dx.doi.org/10.17116/Cardiobulletin20191402136.
  49. van den Berg C.B., Chaves I., Herzog E.M., Willemsen S.P., van der Horst G.T.J., Steegers-Theunissen R.P.M. Early- and late-onset preeclampsia and the DNA methylation of circadian clock and clock-controlled genes in placental and newborn tissues. Chronobiol. Int. 2017; 34(7): 921-32. https://dx.doi.org/ 10.1080/07420528.2017.1326125.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bionika Media, 2024

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies