Prediction of fetal growth restriction using machine learning algorithms
- Autores: Kan N.E.1, Leonova A.A.1, Tyutyunnik V.L.1, Soldatova E.E.1, Ryzhova K.O.1, Serebryakova A.P.2
-
Afiliações:
- Academician Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology
- Primorsky Krai Perinatal Center
- Edição: Nº 7 (2025)
- Páginas: 40-46
- Seção: Original Articles
- URL: https://journals.eco-vector.com/0300-9092/article/view/688920
- DOI: https://doi.org/10.18565/aig.2025.135
- ID: 688920
Citar
Texto integral



Resumo
Objective: To investigate the significant clinical and anamnestic predictors of fetal growth restriction (FGR) and develop effective predictive models using machine learning methods (MLM).
Materials and methods: This retrospective study included 620 pregnant women who were observed and delivered at the V.I. Kulakov NMRC for OG&P, Ministry of Health of Russia. The study group comprised 300 patients with FGR, while the control group included 320 patients with healthy pregnancies. An analysis of the clinical and anamnestic data was conducted to build MLM models, including logistic regression and random forest.
Results: The logistic regression model identified the following predictors: age over 40 years, height less than 1.60 m, chronic arterial hypertension, smoking, a history of FGR, and threatened miscarriage in the first trimester with the formation of retrochorial hematoma and bleeding. This model predicts the development of FGR with a sensitivity of 73% and specificity of 80% (AUC 0.81). An alternative model constructed using random forest demonstrated an increased sensitivity of 78% and a decreased specificity of 74% (AUC 0.79). Within the random forest framework, the most significant contributors to the accuracy of the prognosis were age over 40 years, height less than 1.60 m, chronic arterial hypertension, a history of surgery resulting in a uterine scar, a history of FGR, and threatened miscarriage in the first trimester with retrochorial hematoma without bleeding.
Conclusion: Both models exhibited high predictive value for screening for FGR. Logistic regression offers interpretability, whereas random forest enhances the accuracy by accounting for nonlinear relationships. Implementing these models in clinical practice will optimize the monitoring of pregnant women at risk.
Palavras-chave
Texto integral

Sobre autores
Natalia Kan
Academician Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology
Email: kan-med@mail.ru
ORCID ID: 0000-0001-5087-5946
Código SPIN: 5378-8437
Scopus Author ID: 57008835600
Researcher ID: B-2370-2015
Professor, Dr. Med. Sci., Honored Scientist of the Russian Federation, Deputy Director for Research – Director of the Institute of Obstetrics
Rússia, 4, Oparin St., Moscow, 117997Anastasia Leonova
Academician Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology
Autor responsável pela correspondência
Email: nastena27-03@mail.ru
ORCID ID: 0000-0001-6707-3464
PhD Student, Obstetrician-Gynecologist at the Obstetric Department
Rússia, 4, Oparin St., Moscow, 117997Victor Tyutyunnik
Academician Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology
Email: tioutiounnik@mail.ru
ORCID ID: 0000-0002-5830-5099
Código SPIN: 1963-1359
Scopus Author ID: 56190621500
Researcher ID: B-2364-2015
Professor, Dr. Med. Sci., Leading Researcher at the Center for Scientific and Clinical Research
Rússia, 4, Oparin St., Moscow, 117997Ekaterina Soldatova
Academician Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology
Email: katerina.soldatova95@bk.ru
ORCID ID: 0000-0001-6463-3403
Researcher at the Obstetric Department of the Institute of Obstetrics
Rússia, 4, Oparin St., Moscow, 117997Kristina Ryzhova
Academician Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology
Email: cr.yanina@gmail.com
ORCID ID: 0009-0007-8318-435X
Resident at Maternity Ward No. 1
Rússia, 4, Oparin St., Moscow, 117997Anna Serebryakova
Primorsky Krai Perinatal Center
Email: serebriakovanna@gmail.com
ORCID ID: 0000-0001-7014-2627
Obstetrician-Gynecologist at the Day Hospital Department
Rússia, 1B, Mozhayskaya St., Vladivostok, 690042Bibliografia
- Lei T.Y., Li D.Z. Perinatal outcome of late-onset fetal growth restriction: etiology matters. Ultrasound Obstet. Gynecol. 2022; 60(5): 707-8. https:/ dx.doi.org/10.1002/uog.26090
- Bahia M.L.R., Velarde G.C., Silva F.C.D., Araujo Júnior E., Sá R.A.M. Adverse perinatal outcomes in fetuses with severe late-onset fetal growth restriction. J. Matern. Fetal Neonatal Med. 2022; 35(25): 8666-72. https:/dx.doi.org/ 10.1080/14767058.2021.1995858
- Wu B.A., Chand K.K., Bell A., Miller S.L., Colditz P.B., Malhotra A. et al. Effects of fetal growth restriction on the perinatal neurovascular unit and possible treatment targets. Pediatr. Res. 2024; 95(1): 59-69. https:/dx.doi.org/10.1038/s41390-023-02805-w
- Muniz C.S., Dias B.F., Motoyama P.V.P., Almeida C.T.C., Feitosa F.E.L., Araujo Júnior E. et al. Doppler abnormalities and perinatal outcomes in pregnant women with early-onset fetal growth restriction. J. Matern. Fetal Neonatal Med. 2022; 35(25): 7276-79. https:/dx.doi.org/10.1080/14767058.2021.1946786
- Dall'Asta A., Stampalija T., Mecacci F., Zegarra R.R., Sorrentino S., Minopoli M. et al. Incidence, clinical features and perinatal outcome in anomalous fetuses with late-onset growth restriction: cohort study. Ultrasound Obstet. Gynecol. 2022; 60(5): 632-39. https:/dx.doi.org/10.1002/uog.24961
- Rizzo G., Mappa I., Bitsadze V., Słodki M., Khizroeva J., Makatsariya A. et al. Role of Doppler ultrasound at time of diagnosis of late-onset fetal growth restriction in predicting adverse perinatal outcome: prospective cohort study. Ultrasound Obstet. Gynecol. 2020; 55(6): 793-8. https:/dx.doi.org/10.1002/uog.20406
- Misgina K.H., Levine L., Boezen H.M., Bezabih A.M., van der Beek E.M., Groen H. Influence of perinatal distress on adverse birth outcomes: a prospective study in the Tigray region, Northern Ethiopia. PLOS One. 2023; 18(7): e0287686. https:/dx.doi.org/10.1371/journal.pone.0287686
- Sacchi C., Marino C., Nosarti C., Vieno A., Visentin S., Simonelli A. Association of intrauterine growth restriction and small for gestational age status with childhood cognitive outcomes: a systematic review and meta-analysis. JAMA Pediatr. 2020; 174(8): 772-81. https:/dx.doi.org/10.1001/jamapediatrics.2020.1097
- Sacchi C., O'Muircheartaigh J., Batalle D., Counsell S.J., Simonelli A., Cesano M. et al. Neurodevelopmental outcomes following intrauterine growth restriction and very preterm birth. J. Pediatr. 2021; 238: 135-44. https:/dx.doi.org/10.1016/ j.jpeds.2021.07.002
- Fernandez-Rodriguez B., Alba C. de, Galindo A., Recio D., Villalain C., Pallas C.R. et al. Obstetric and pediatric growth charts for the detection of late-onset fetal growth restriction and neonatal adverse outcomes. J. Perinat. Med. 2020; 49(2): 216-24. https:/dx.doi.org/10.1515/jpm-2020-0210
- Kingdom J., Ashwal E., Lausman A., Liauw J., Soliman N., Figueiro-Filho E. et al. Guideline No. 442: Fetal growth restriction: screening, diagnosis, and management in singleton pregnancies. J. Obstet. Gynaecol. Can. 2023; 45(10): 102154. https:/dx.doi.org/10.1016/j.jogc.2023.05.022
- Melamed N., Baschat A., Yinon Y., Athanasiadis A., Mecacci F., Figueras F. et al. FIGO (international Federation of Gynecology and obstetrics) initiative on fetal growth: best practice advice for screening, diagnosis, and management of fetal growth restriction. Int. J. Gynaecol. Obstet. 2021; 152 Suppl. 1(Suppl. 1): 3-57. https:/dx.doi.org/10.1002/ijgo.13522
- Miranda J., Rodriguez-Lopez M., Triunfo S., Sairanen M., Kouru H., Parra-Saavedra M. et al. Prediction of fetal growth restriction using estimated fetal weight vs a combined screening model in the third trimester. Ultrasound Obstet. Gynecol. 2017; 50(5): 603-11. https:/dx.doi.org/10.1002/uog.17393
- Волочаева М.В., Тимофеева А.В., Федоров И.С., Кан Н.Е., Тютюнник В.Л., Рыжова К.О., Гасымова Ш.Р. Модель диагностики задержки роста плода с использованием функциональных методов исследования. Акушерство и гинекология. 2025; 2: 31-9. [Volochaeva M.V., Timofeeva A.V., Fedorov I.S., Kan N.E., Tyutyunnik V.L., Ryzhova K.O., Gasymova Sh.R. A model for diagnosing fetal growth restriction using functional diagnostic methods. Obstetrics and Gynecology. 2025; (2): 31-9 (in Russian)]. https://dx.doi.org/10.18565/aig.2025.15
- Zimmerman R.M., Hernandez E.J., Yandell M., Tristani-Firouzi M., Silver R.M., Grobman W. et al. AI-based analysis of fetal growth restriction in a prospective obstetric cohort quantifies compound risks for perinatal morbidity and mortality and identifies previously unrecognized high risk clinical scenarios. BMC Pregnancy Childbirth. 2025; 25(1): 80. https:/dx.doi.org/10.1186/ s12884-024-07095-6
- Ulusoy C.O., Kurt A., Seyhanli Z., Hizli B., Bucak M., Agaoglu R.T. et al. Role of inflammatory markers and doppler parameters in late-onset fetal growth restriction: a machine-learning approach. Am. J. Reprod. Immunol. 2024; 92(4): e70004. https:/dx.doi.org/10.1111/aji.70004
- Rescinito R., Ratti M., Payedimarri A.B., Panella M. Prediction models for intrauterine growth restriction using artificial intelligence and machine learning: a systematic review and meta-analysis. Healthcare (Basel). 2023; 11(11): 1617. https:/dx.doi.org/10.3390/healthcare11111617
- Pierucci U.M., Tonni G., Pelizzo G., Paraboschi I., Werner H., Ruano R. Artificial intelligence in fetal growth restriction management: a narrative review. J. Clin. Ultrasound. 2025; 53(4): 825-31. https:/dx.doi.org/10.1002/jcu.23918
- Lee S.U., Choi S.K., Jo Y.S., Wie J.H., Shin J.E., Kim Y.H. et al. Prediction model of late fetal growth restriction with machine learning algorithms. Life (Basel). 2024; 14(11): 1521. https:/dx.doi.org/10.3390/life14111521
- Ornaghi S., Caricati A., Di Martino D.D., Mossa M., Di Nicola S., Invernizzi F. et al. Non-invasive maternal hemodynamic assessment to classify high-risk pregnancies complicated by fetal growth restriction. Front. Clin. Diabetes Healthc. 2022; 3: 851971. https:/dx.doi.org/10.3389/fcdhc.2022.851971
- Huo J., Li G., Li Ch., Li X., Liu G., Chen Q. et al. Screening for late-onset fetal growth restriction in antepartum fetal monitoring using Deep Forest and SHAP. In: Cao B.Y., Wang S.F., Nasseri H., Zhong Y.B., eds. Intelligent Systems and Computing. ICFIE 2022. Lecture Notes on Data Engineering and Communications Technologies, vol. 207. Springer, Singapore; 2024. https:/dx.doi.org/10.1007/978-981-97-2891-6_29
- Gordijn S.J., Beune I.M., Thilaganathan B., Papageorghiou A., Baschat A.A., Baker P.N. et al. Consensus definition of fetal growth restriction: a Delphi procedure. Ultrasound Obstet. Gynecol. 2016; 48(3): 333-9. https:/ dx.doi.org/10.1002/uog.15884
- Рюмина И.И., Байбарина Е.Н., Нароган М.В., Маркелова М.М., Орловская И.В., Зубков В.В., Дегтярев Д.Н. Использование международных стандартов роста для оценки физического развития новорожденных и недоношенных детей. Неонатология: новости, мнения, обучение. 2023; 11(2): 48-52. [Ryumina I.I., Baibarina E.N., Narogan M.V., Markelova M.M., Orlovskaya I.V., Zubkov V.V., Degtyarev D.N. Using international growth standards to assess the physical development of newborns and premature infants. Neonatology: News, Opinions, Training. 2023; 11(2): 48-52 (in Russian)]. https:/dx.doi.org/10.33029/2308-2402-2023-11-2-48-52
- Zhang P., Haymar T., Al-Sayyed F., Dygulski S., Dygulska B., Devi A. et al. Placental pathology associated with maternal age and maternal obesity in singleton pregnancy. J. Matern. Fetal Neonatal Med. 2022; 35(25): 9517-26. https:/dx.doi.org/10.1080/14767058.2022.2044777
- Vasapollo B., Novelli G.P., Farsetti D., Valensise H. Maternal peripheral vascular resistance at mid gestation in chronic hypertension as a predictor of fetal growth restriction. J. Matern. Fetal Neonatal Med. 2022; 35(25): 9834-36. https:/dx.doi.org/10.1080/14767058.2022.2056443
- Dall'Asta A., Minopoli M., Zegarra R.R., Di Pasquo E., Ghi T. An update on maternal cardiac hemodynamics in fetal growth restriction and pre-eclampsia. J. Clin. Ultrasound. 2023; 51(2): 265-72. https:/dx.doi.org/10.1002/ jcu.23392
- Yang L., Feng L., Huang L., Li X., Qiu W., Yang K. et al. Maternal factors for intrauterine growth retardation: systematic review and meta-analysis of observational studies. Reprod. Sci. 2023; 30(6): 1737-45. https:/ dx.doi.org/10.1007/s43032-021-00756-3
- Министерство здравоохранения Российской Федерации. Клинические рекомендации. Недостаточный рост плода, требующий предоставления медицинской помощи матери (задержка роста плода). М.; 2022. 71 с. [Ministry of health of the Russian Federation. Clinical guidelines. Insufficient growth of the fetus, requiring the provision of medical care to the mother (fetal growth retardation). Moscow; 2022. 71 p. (in Russian)].
Arquivos suplementares
